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RESUMEN

Este trabajo plantea la recon�guración a mínimas pérdidas, tomando en cuenta las variaciones de carga del sistema, a través 

de un proceso de recon�guración  estocástico. El método de Monte Carlo es usado para considerar las variaciones naturales 

de la carga, utilizando una función de probabilidad normal para generar niveles aleatorios de carga en los nudos. Los 

resultados de este trabajo muestran la existencia de un conjunto de ramas que son frecuentemente eliminadas en el proceso 

de recon�guración. Esto genera un conjunto de ramas de un árbol, las que mejor representan aleatoriedad universal de la 

carga. La topología obtenida la denominamos “Conjunto de Ramas Esperadas” (Expected Branch Set, EBS). La topología 

asociada al EBS es casi similar a la topología obtenida usando los valores de demanda promedio. Esto hace innecesario el 

realizar un considerable número de pruebas para encontrar la topología que mejor considera las variaciones de carga. El 

algoritmo propuesto fue aplicado a dos sistemas de prueba y a un sistema real de gran envergadura.

Palabras clave: Recon�guración, sistema de distribución, EBS, minimización de pérdidas, método de Monte Carlo.

ABSTRACT

This paper approaches the minimal loss recon�guration problem, taking into account the load variations of the systems, 

through a stochastic recon�guration process. The Monte Carlo method is used to consider the natural load variation. A 

normal probability function is used to generate aleatory load levels in the nodes. The results of this work show the existence 

of a set of branches that are frequently eliminated. This generates a tree branch set that best represents the universal 

randomness of the load. We call it “Expected Branch Set (EBS)”. The topology associated to the EBS coincides with that 

obtained using the average demand values. This makes it unnecessary to generate a considerable number of tests to �nd 

that topology that best considers the load variation. The proposed algorithm was applied to two test networks and to a 

large real network.

Keywords: Recon�guration, distribution Networks, EBS, loss minimization, Monte Carlo method.

INTRODUCTION

Network recon�guration is an alteration process in the 

topological structure of distribution feeders through changes 

in the on/off state of the sectional switches. During normal 

operating conditions, networks can be recon�gured to reduce 

the power losses caused by the Joule effect. This process 

is known as minimal loss recon�guration problem. One 

of the �rst papers published in this �eld was presented by 

Merlin and Back [1], who developed a heuristic approach. 

This solution scheme starts with a total meshed system 

in which all the switching elements are closed. They are 

then opened one by one until all the closed circuits are 

eliminated, and a radial system is obtained. However, the 

application of this method to real systems is not practical 

due to the signi�cant computer effort required. This method 

was later modi�ed by Shirmohammadi and Hong [2]. 

They reduced computing time by applying a more ef�cient 

load �ow. Another research approach on minimal loss 

recon�guration is proposed by Civanlar [3]. In this paper, 
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an analytical expression is developed in order to estimate 

loss reduction produced by open and close actions without 

altering the radiality of the system. The authors also provide 

some criteria to eliminate undesired switching. This kind 

of solution, called “branches interchange algorithm”, is 

based solely on heuristics. Sar� [4] present a survey in 

the area of distribution systems recon�guration, ranging 

from the fundamental work of Merlin and Back, to the 

current state of art in 1993. In regards to load reduction on 

real-time operation considering load variability, Wagner 

[5] indicated that an important loss reduction was obtained 

through simulations in Canadian networks during a one-

year period. R. Broadwater [6] presented algorithms to 

reduce losses through load estimators that consider the 

load variability. Chen [7] showed hourly recon�guration 

bene�ts based on short and long-term loss reduction. An 

optimal power �ow model for minimal losses is applied 

by C. Brian [8]. This paper presents only results and 

conclusions about hourly recon�guration for on-line 

power operation in an energy control center. Peponis 

[9], obtained loss minimization by the installation of 

capacitors and by network recon�guration. They also took 

into account the impact of load modeling. The application 

method is presented in [10]. A heuristic constructive 

method for minimal losses recon�guration is proposed 

by T. E. McDermont in [11]. In each stage, by means 

of a loss incremental evaluation, a new node is added 

that introduces minimal losses. López [12], presented 

an algorithm for minimal loss recon�guration, based 

on the dynamic programming approach. This method is 

quite simple and the results are obtained in a very short 

computing time, so it is applicable to real big-sized systems. 

Therefore, it opens a way to real time recon�guration of 

networks. Finally López [13] presented an application 

of the algorithm to on-line recon�guration considering 

variability demand using daily pro�les of various loads 

(industrial, commercial, public lighting).

One important conclusion of these previous works is that 

in short term and medium term the  load variation is not 

relevant to the topological solutions e.g. independently 

of all possible values of demand, the total number of  

topologies to be considered is extremely reduced. This is 

because the objective function of the optimization problem

shows a leveling off of the optimum zone (there is less 

sensibility towards the objective function regarding the 

load demand in this region). Consequently, we analyzed 

the recon�guration problem as a probabilistic problem, 

assuming the existence of whatever aleatory events that 

could have an effect on the resulting topologies.

In this paper, the switching actions to reduce losses take 

into account the varying nature of loads. This is done 

through the use of the Monte Carlo Method Applied to 

Recon�guration (MCR): node powers are considered as a 

Normal Probability Function (NPF), having an “expected 

power” ( ) and a “standard deviation” ( ). In this paper, 

the MCR is applied �rst to two test networks and then 

to a real network in order to evaluate the recon�guration 

advantages considering the random load in each node. 

The studies are made with the model developed in [12], 

including demand aspects such as the models themselves (P, 

Z or I constant). Daily load patterns, such as those shown 

in [13] and [16] are used to assume average demand values 

and standard deviation values. Based on the preceding 

information, values of “ %”, 15%, 30% and 50% are 

used in this paper. These standard deviation values amply 

cover the load variations of real systems.

MINIMAL LOSS RECONFIGURATION

Minimal Loss Problem

The minimal loss recon�guration problem in distribution 

systems, through topological changes, can be written as 

follows [1-4]:

Minimize R i
b b

b

Nr
2

1

(1)

Subject to:

A i I
T

(2)

i i
máx (3)

V V Vmin max
(4)

M N N
f (5)

Where:

Rb : Resistance of branch “b”

Ib : Complex current in branch “b”

i : Branches currents vector 

i
max

: Maximum branches current

I : Vector of node currents

[A] : Incidence matrix

V : Node voltage

Vmin : Minimum node voltage 

Vmax : Maximum node voltage

Nr : Total number of branches

M : Branch number of radial network

N : Number of nodes

Nf : Number of sources
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Equation (2) corresponds to the balance of load currents 

in each node. Equation (3) corresponds to the feeder’s 

thermal limits. Equation (4) considers voltage constraints in 

each node. Finally the fourth constraint (5) is the radiality 

restriction in a primary distribution system.

Demonstrative Example

The procedure can be described by using the small test 

system shown in �gure 1, whose parameters are given in 

table 1. Node 1 is the only source.

1
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5
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Figure 1. Test systems in Demonstrative Example.

Table 1. Test System Characteristics.

Line Start Node Final Node R(p.u.)
I
L

(p.u.)

1 1 2 0.3 0.34

2 1 3 0.2 1.00

3 2 4 0.2 0.67

4 4 5 0.1 1.00

5 3 4 0.1 ---

The resume results are showed in table 2. At the beginning, 

we consider no connection at all, so that there are no 

losses. Then in the �rst stage, we consider connecting 

one node to the unique source; we have only two choice: 

connect 2 or 3; connection 1-2 leads to losses equal to 

0.035 (p.u.), while connecting 1-3 lead to losses equal to 

0.200 (p.u.). We choose to connect 1-2 (�gure 2.1), and 

we say that selected variable is X
1
*=2 and the following 

state will be S=2. Similarly, in stage 2 the selected variable 

is X
2
*= 3 and the next state is S=3 (�gure 2.2). In stage 

3 the selected variable is X
3
*=4 and the next state is S=4 

(�gure 2.3). Stage 4 does not imply big changes because 

there is only one possible way to incorporate state 5 

(�gure 2.4). It is as follows: f*(5)=1.474 (p.u.). When 

the state S=5 is incorporated in the stage 4, a “horizontal 

chaining” is produced. Here a new state is not incorporated, 

but branch distribution is recombined. For stage 5, the 

selected variable is X
5
*=3 and the next state is S=2 which 

implies that branches 2-4 and 3-4 interchange on stage 

6 (�gure 2.5). Stage 7 does not make any changes in the 

topological structure (�gure 2.5). Finally, branches 1-2, 

1-3, 3-4, 4-5 make up the de�nite con�guration. The loss 

for this con�guration is 1.840 (p.u.). 
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Figure 2. Development stages of the minimal loss 

topology. 

Table 2. Application of DP Method to the Test 

System.

Stage (Sn,Xn) f(Sn,Xn) fn*(S) Xn* Results

1
(1,2)
(1,3)

0,035
0,200

0,035 2 Fig. 2.1

2
(1,3)
(2,4)

0,200
0,361

0,200 3 Fig. 2.2

3
(2,4)
(3,4)

0,361
0,403

0,361 4 Fig. 2.3

4 (4,5) 1,474 1,474 5 Fig. 2.4

5
(1,3)
(4,3)

0,200
2,470

0,200 3 Fig. 2.4

6
(2,4)
(3,4)

1,735
1,505 1,505 4 Fig. 2.5

7
(1,2)
(4,2)

0,035
0,534

0,035 2 Fig. 2.5

General Algorithm of Recon�guration

The minimal loss recon�guration is solved by the Dynamic 

Programming Approach. The following algorithm describes 

the method [12].

i) System data: Number and rating of power substations 

and feeders, topology and switching possibilities of 

the power apparatus connected to the network.

ii) Actual operation: To evaluate the actual system 

conditions such as node voltage, and real and reactive 

losses.

iii) Graph compression: When there is a set of nodes 

with non-recon�gurable radial topology, an equivalent 

node representing the load of the subsystem is 

considered.

iv) Possible node connections: The process goes from each 

source node of the network (substation) to the �nal 

load nodes, connecting each new possible node.

Stage 1 Stage 2 Stage 3
Figure 2.1 Figure 2.2 Figure 2.3

Stage 4, 5 Stage 6, 7
Figure 2.4 Figure 2.5
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v) Losses functional evaluation: In each stage the 

connection of a new node is added to the tree, producing 

the lowest increment in losses functional.

vi) Radial load flow: To determine voltage profile, 

currents and losses. In this case, nodes are considered 

according to the load type (P, Z or I, constant).

vii) Backtracking process: The effect of the last load 

connection in the structure is evaluated by applying 

a backward process.

viii)Constraints: Veri�cation of thermal limits in substations 

and feeders, voltage pro�les and other constraints. If a 

constraint is not ful�lled, a transfer of loads between 

sub-stations should be made and step iv) should be 

performed again.

ix) Radial systems: The process goes on, until all loads are 

connected to the network; if not, they all go to iv).

x) Final loss evaluation: A fast radial load �ow is applied 

to determine the network’s �nal losses.

THE MONTE CARLO RECONFIGURATION

The Monte Carlo Method (MCM) is basically a statistical 

simulation that uses a random sequence of numbers to 

describe the statistical behavior of a variable (in this case 

the node demand). This work uses a NPF with characteristic 

statistical indexes: expected value “ ” and standard 

deviation “ ”. The distribution of a normal variable is 

entirely determined by these two parameters. The NPF 

is described by equation (6), which determines a “bell 

shaped” curve, shown in �gure 3. The hypothesis of the 

MCM, as a mathematical technique, infers the search of an 

ef�cient solution instead of an accurate solution [14]. 

f(x)
1

2
e

x1

2

2

2 (6)

Where:

x : Random variable

: Expected value of  “x”

: Standard deviation of “x”

f(x)

X

Figure 3. Probabi l i ty  Funct ion  wi th  Normal 

Distribution.

The substations composite demands vary in time according 

to: industrial, commercial, residential, street lighting 

and mixed loads [16-19], following different patterns of 

behavior. The use of the NPF considers the natural composite 

load variations, based on the characteristics of the demand 

predictors and the data acquisitions systems (regarding: 

ranges, variance and Pearson variation coef�cients). On 

the other hand, practice indicates that the composite 

demand values in a substation exhibit medium Curtosis 

indexes and low asymmetry coef�cients of Fischer. Thus, 

the probabilistic values for the demand (P
n
 and Q

n
) can 

be correctly represented by quasi-Mesocurtics functions 

i.e., distributed in a NPF [15]. Consequently, the expected 

value and standard deviation of node composite demands 

were assumed, i.e., medium loads and realistic standard 

deviations for the electrical systems that were studied (two 

test systems and one real system), according to the speci�c 

node and the study to be carried out. This permits working 

with two test systems shown in the literature, of which 

the particular stochastic behavior is unknown. Besides, 

the above is based on the application of our method to 

planning of the operation in distribution networks.

ALGORITHM USED

The algorithm developed to determine the minimal losses 

topology, considering the node load random variation, is 

made up of the following steps [12]:

1. Data Input: Network topological data and node 

powers are entered in the Data Base

2. Random Power Generation: Node powers are 

generated randomly with a normal probability 

distribution

3. Network Reconfiguration: The algorithm 

recon�guration for minimal losses based on Modi�ed 

Dynamic Programming is applied

4. Data Updating: The topological result, obtained 

from the recon�guration method, is updated, storing 

the branches that open and close in the process

5. Number of Simulations: The quantity of recon�guration 

evaluations (in this case 3000) is veri�ed. If this is 

not met, it goes back to step 2

6. Final Data Processing: Data from the opened 

(disconnected) and closed (connected) branches are 

arranged, thus getting how many times each branch 

opened or closed.
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APPLICATIONS

Method Validation

In table 3, relevant data of both testing systems and of the 

real system is presented, such as: source number, node 

number, line number and active and reactive powers in each 

node. The real system includes commercial, residential, 

industrial and public lighting loads [12]. 

Table 3. Parameters of Test Systems.

Name Sources Nodes Lines P(MW) Q(MVAR)

Syst. N°1 1 33 37 3,7 2,3

Syst. N°2 3 26 45 57,4 19,8

Real

System
4 917 959 107,6 48,38

Figure 4, shows testing System 1. Two nodes are analyzed 

(node 10 and node 23). Figure 5 and �gure 6 show the 

generated random powers. These nodes correspond to 

maximum, minimum and medium demand from System 

N° 1 (considering a standard deviation equal to 30%).

20 19 18 33 2 22 23

7 6 5 4
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321 24

10 9 8 25 26 2711 28

12 13 14 15 16
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22 23

7 8 8 4

3 24

37

29
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31

33
21

35 8 25

12 34

1011 9

13 14 15 16

17

26 27 28

36 32

Figure 4. Testing System 1 (meshed).

Table 4, shows the expected demand values (Po), Monte 

Carlo expected power ( ) and Monte Carlo standard 

deviation ( ), for the two nodes of System 1 (node 10 

and node 23). 

Table 4. Values of Demanded Power (
o
 = 30%).

N° node Po (%)  (%)  (%)

23 4,20 4,18 1,26

10 0,45 0,45 0,13

Figure 5 and �gure 6, prove effectively that node powers 

follow a normal distribution.
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Figure 5. Node N°  23 Histogram. Highest demand node 

from System 1.
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Figure 6. Node N° 10 Histogram Lowest demand node 

from System 1.

Testing System 1

When applying MCR in System 1, see �gure 4, �ve 

branches must be eliminated (opened) to obtain a radial 

topology with minimal losses. Tables 5, 6 and 7 show 

the results for standard deviation of 15%, 30% and 50% 

respectively. Results show eliminated branches sequences, 

the number of the eliminated branch, the nodes between 

which the eliminated branch is connected (N
p
–N

q
), the 

occurrence and the branch elimination percentage in 

respect to the 3.000 evaluations.

Testing System 2 [20]

The MCR is applied to System 2. In this system, 22 

branches must be eliminated to obtain a radial topology 

at minimal losses. Tables 8, 9 and 10 show the resumed 

results for a standard deviation of 15%, 30% and 50%

respectively. Results show: the eliminated branch sequences, 

the occurrence, and branch elimination percentage in 

regards to the 3.000 evaluations.
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Real System [21]

MCR was applied to determine the minimal losses 

topologies that result in the real system, taking into 

consideration the random values of the node load. For 

this system, 43 branches in each recon�guration step 

must be opened to maintain radial topology at minimal 

losses. Tables 11, 12 and 13 present the resumed results 

obtained for a standard deviation of 15%, 30% and 50% 

respectively. These tables show a summary of the results 

obtained for different values of deviation. These tables 

show a change in the opening and the percentage of 

eliminated branches when applying the recon�guration, 

starting from sequence 43. 

Topologies comparison in real system

Table 14, shows a comparison between the losses obtained 

when recon�guring the real system, applying the method 

proposed in [12], and the losses obtained when using 

the EBS topology at different load levels (75%, 100% 

and 125%).

Table 5. Load Variation of 15% (System 1).

Sequence
Branch

N°
Np – Nq

N° of times 
that opens

%
opening

1 9 8 – 9 2999 99,97
2 14 13 – 14 2998 99,93
3 7 6 – 7 2949 98,30
4 37 24 – 28 2627 87,57
5 32 31 – 32 2425 80,83
6 31 30 – 31 436 14,53

7 28 27 – 28 373 12,43

8 30 29 – 30 139 4,63

9 33 7 – 20 51 1,70

10 34 8 – 14 2 0,07

11 11 10 – 11 1 0,03

Table 6. Load Variation of 30% (System 1).

Sequence
Nº of 

Branch
Np – Nq

N° of times 
that opens

%
Opening

1 9 8 – 9 2818 93,93
2 14 13 – 14 2808 93,60
3 7 6 – 7 2388 79,60
4 37 24 – 28 2215 73,83
5 32 31 – 32 1515 50,50
6 30 29 – 30 889 29,63

-- -- -- -- --

17 6 5 – 6 3 0,03

18 26 25 – 26 1 0,03

Table 7. Load Variation of 50% (System 1).

Sequence Nº of 
Branch Np – Nq N° of times 

that opens
%

Opening

1 9 8 – 9 2779 92,63
2 14 13 – 14 2768 92,27
3 7 6 – 7 2356 78,53
4 37 24 – 28 2169 72,30
5 32 31 – 32 1391 46,37
6 30 29 – 30 875 29,17

-- -- -- -- --

23 10 9 – 10 2 0,07

24 15 14 – 15 1 0,03

Table 8. Load Variation of 15% (System  2).

Sequence N° of Openings %  Opening

1 to 15 3000 100,0
-- -- --
22 2492 83,07
23 508 16,93

-- -- --

30 10 0,33

Table 9. Load Variation of 30% (System  2).

Sequence N° of Openings % Opening

1  to  12 3000 100,0
-- -- --
22 2350 78,33
23 650 21,67

-- -- --

33 19 0,63

Table 10. Load Variation of 50% (System  2).

Sequence N° of Openings % Opening

1  to  8 3000 100,0
-- -- --
22 2345 78,17
23 655 21,83

-- -- --

35 4 0,13

Table 11. Load Variation of 15% (Real System).

Sequence N° of Openings % Opening

1 to 31 3000 100,0
32 2997 99,90
-- -- --
43 2812 93,73
44 178 5,93

-- -- --

58 3 0,10
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Table 12. Load Variation of 30% (Real System).

Sequence N° of Openings %  Opening

1  to  22 3000 100,0
23 2999 99,97
-- -- --
43 2778 92,60
44 211 7,03

-- -- --

66 1 0,03

Table 13. Load Variation of 50% (Real System).

Sequence N° of Openings %  Opening

1  to  10 3000 100,0
11 2999 99,97
-- -- --
43 2763 92,10
44 232 7,73

-- -- --

78 1 0,03

Table 14. Loss Level Comparison.

Case
Demand

 (%)

MW Loss
Ref. [12] 
topology

MW Loss
EBS

topology

∆ (%)
(E-3)

1 75 2,8385 2,8387 7,045

2 100 2,9192 2,9194 6,851

3 125 2,9987 2,9990 10,004

RESULTS ANALYSIS

Results obtained for System 1 (tables 5, 6 and 7) show that 

a topology can be considered as the most often repeated 

when taking into account random load nodes with various 

standard deviations. Such an “EBS topology” is obtained 

by opening �ve branches to maintain radial topology. For 

System 2, the same results can be observed: an “EBS 

topology” is obtained eliminating 22 branches (Tables 

8, 9 and 10). However, it must be mentioned concerning 

both testing systems that two relevant facts occur when 

standard deviation increases (15%, 30% and 50%):

Branch elimination percentage decreases (80.83%, 

50.50% and 46.37%, for Sequence 5 in System 1, 

Tables 5, 6 and 7).

An increase in the quantity of eliminated or opened 

branches is appreciated (11, 18 and 24 branches are 

eliminated in System 1, Tables 5, 6 and 7).

For the real system, 43 branches must be eliminated to 

obtain radial topology at minimal losses. Tables 11, 12 

and 13 show the different eliminated branches and their 

occurrence. It can be observed that for the last eliminated 

branch (sequence 43) there exists an occurrence of 93.73%, 

92.60% and 92.10% for a standard deviation of 15%, 30% 

and 50%, respectively (Table 11, 12 and 13). The opening 

branch occurrence from sequence 43 falls suddenly to 

5.93%, 7.03% and 7.73% for a standard deviation of 15%, 

30% and 50%. Moreover, similarly to testing systems, an 

increase of the standard deviation produces a decrease of 

the opening occurrence of the eliminated branches and, 

on the other hand, it produces an increase in the number 

of open branches.

Table 14, shows loss levels when a recon�guration is 

applied to a real system (using the methodology presented 

in [12]), taking into account different load levels of the 

system (75%, 100% and 125%). Table 12, also shows the 

results obtained when applying only one radial load �ow 

to determine the losses with the “EBS topology”, taking 

into account the different load levels mentioned before. 

When recon�guring the real network with different load 

levels and losses obtained when using the “EBS topology”, 

there are very small differences between power loss results 

(6.851E-5% in case 2).
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CONCLUSIONS

This paper presents a method for probabilistic minimal 

loss recon�guration in electrical distribution systems 

considering random node loads. The loads are considered 

with a normal probability function, an expected value ( ), 

and standard deviations ( ) provided by both our own 

authors’ experiences, and also other authors’ experiences. 

In each system analyzed, 3000 recon�guration evaluations 

were performed with the purpose of �nding in each case 

an Expected Branch Set (EBS). This expected branch set 

or “EBS topologies” is what best represents the aleatory 

behavior of the demand of the system.
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In practice only this EBS topology must be evaluated to 

consider random load. Results obtained when analyzing the 

real system show that the highest frequency EBS topology 

gives loss levels that are very close to those optimal losses 

obtained by the Monte Carlo recon�guration process, taking 

into account all the random load levels. Therefore, the 

EBS topology turns out to be a useful tool in the planning 

and operation phases of distribution systems.

On the other hand, in all the studied cases, tests and 

real systems, it was found that the increase of the node 

power standard deviation (load variation increase) causes 

a decrease in the frequency of eliminated branches. 

Consequently, an increase in the number of eliminated 

branches is observed.

Finally, the results obtained in this paper are consequent 

with the heuristic results presented in [13], where the 

on-line hourly load variation is considered.
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