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RESUMEN

En este trabajo se aborda el problema de la construcción de la funcional de Lagrange de un campo electromagnético. Se 

introducen las ecuaciones generalizadas de Maxwell de un campo electromagnético en el espacio libre. La idea principal 

se basa en el cambio de función de Lagrange en virtud de la acción integral. Por lo general, la funcional de Lagrange, que 

describe el campo electromagnético, se construye con el cuadrado del tensor de campo electromagnético. Ese término 

cuadrático es la razón, desde un punto de vista matemático, de la forma lineal de las ecuaciones de Maxwell en el espacio 

libre. Se obtienen las ecuaciones no lineales de Maxwell sin considerar esta suposición. Las ecuaciones obtenidas son 

bastante similares a las conocidas ecuaciones de Maxwell. Se analiza el tensor de energía del campo electromagnético en 

un enfoque quiral de la Lagrangiana de Born Infeld en relación con la constante cosmológica.
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ABSTRACT

This work deals with the problem of the construction of the Lagrange functional for an electromagnetic �eld. The generalised 

Maxwell equations for an electromagnetic �eld in free space are introduced. The main idea relies on the change of 

Lagrange function under the integral action. Usually, the Lagrange functional which describes the electromagnetic �eld 

is built with the quadrate of the electromagnetic �eld tensor Fik. Such a quadrate term is the reason, from a mathematical 

point of view, for the linear form of the Maxwell equations in free space. The author does not make this assumption 

and nonlinear Maxwell equations are obtained. New material parameters of free space are established. The equations 

obtained are quite similar to the well-known Maxwell equations. The energy tensor of the electromagnetic �eld from a 

chiral approach to the Born Infeld Lagrangian is discussed in connection with the cosmological constant.
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INTRODUCTION

The action integral (built to formulate the least-square 

principle [1]) for a process in an electromagnetic �eld 

has the following form:
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All physical phenomena in the electromagnetic �eld take 

place so the action integral has the minimal value .

The theory of the electromagnetic �eld [1] leads to the 

Lagrange motion equations for an electric charge in the 

electromagnetic �eld and de�nes the electromagnetic 

�eld tensor:
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Eqns. (2) are equivalent to the �rst pair of Maxwell 

equations:
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Or, in three-dimensional notation:

curl and divE B B 0 (4)

Making calculations of variation for the functional I with 

respect to the four-dimensional potential Ai one obtain 

the second pair of Maxwell equations:
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Or in equivalent vector notation:

div
0 0

1
0

E B j Eand curl (6)

From the mathematical point of view, the demand for a 

linear form of Maxwell equations for free space compels 

one to assume that the �eld term (the third in integral 

eqn. (1)) must be built with the electromagnetic �eld tensor 

Fik second power (the exponent of any power function 

under the action integral is one less after calculating the 

variation). So, the equations obtained are linear with 

respect to the electromagnetic �eld tensor Fik. The action 

integral I could be rewritten in the following form:
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The linear form of the Maxwell equations, from the 

mathematical point of view, is arbitrarily assumed by 

eqn. (7). In addition the linear character of Maxwell 

equations for free space (as well as for air) has been 

con�rmed by many experiments. There is no doubt that 

linear Maxwell equations, within experimental precision, are 

satis�ed, however, we could not reject other mathematical 

forms of the electromagnetic �eld equations.

Is we assume, more generally, that the action integral is built 

with the help of a function f (·), it could be written:

I S V jA f B E
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(the codomain for the function f (·) is the real set).

Under this assumption new Maxwell equations having 

the same mathematical structure are obtained. The wave 

speed in free space for these new Maxwell equations will 

also be equal to “c”.

MAXWELL EQUATIONS FOR THE 

GENERALISED FUNCTIONAL

The second pair of Maxwell equations in the case of 

the generalised action integral eqn. (8) is obtained after 

evaluating the variation of the action with respect to the 

four-dimensional potential Ai. We can denote
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According to eqn. (2) we could write
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After interchanging the indices ‘i’ and ‘k’ in the �nal 

term we obtain:
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Using the Gauss theorem and taking into account the fact 

of the disappearance of the four-dimensional potential at 

the boundary of the four-dimensional space we obtain
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Eqns. (9) include the second pair of Maxwell equations 

in the form eqns. (5) and (6). Whereas, on using the 

function f (·) as the identify function, its derivative will 

be equal to one; i.e.

f F F fik
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This means that the Maxwell equations in the form 

eqn. (9) include the classical Maxwell equations in the 

form of eqn. (5) and (6).

INTERPRETATION OF THE ESTABLISHED 

EQUATIONS

In three-dimensional notation, eqn. (9) has the following 

form:
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The second pair of Maxwell equations could be rewritten 

in the same form as the well-known Maxwell equations 

(eqns. (5) and (6)):

div v
t

E B j Ecurl (10)

Where it was denoted:
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Lets us assume that the function f (·) can be almost linear 

or linear. Many experiments con�rm that if the nonlinear 

character of the electromagnetic �eld equations exists, it 

cannot be strong; it must be weak. It seems to be reasonable 

to consider only the �rst nonlinear term of the Taylor 

series. Here we propose that:
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According to eqn. (11) and (12) the permittivity and 

reluctivity (or permeability) for free space have been 

changed with respect to the strong electric or magnetic 

�eld. The strong electromagnetic �eld causes a change 

of the free space coef�cients. The multiplication ‘ ’ by 

‘µ’ is independent of the function f (·) and equal to 
0
µ

0
:

0 0

The Maxwell equations (in spite of their nonlinear 

character) still have the same form:

div
t

E B j Ecurl

cur

0
1

llE B Bdiv 0

(13)

The derivative f’(·) which appears in the Maxwell equations 

is the reason for the nonlinear character of the generalised 

Maxwell equations with respect to electric �eld strength 

and magnetic �ux density. The level of ‘deformation’ of the 

Maxwell equations in comparison with the linear Maxwell 

equations is determined by the constant ‘ ’. The less is 

the value of constant ‘ ’, the less is the in�uence of the 

nonlinear term in eqn. (12). We may evaluate (roughly) 

the value of this unknown constant.

With modern levels of measurement accuracy, we are 

able to use laboratory devices that enable determination 

of the value of magnetic �ux density (or electric �eld 

strength) with very high accuracy (0.01%), and the material 

parameters with the same relative error. In a magnetic 

�eld B=2T the variation of this material parameter will 

not be observed according to eqn. if:

10 11 1J (14)

The constant ‘ ’ is so small only in the case of strong 

magnetic or electric �elds may the linear Maxwell equations 

deformation be observed and detected.

GENERALIZATIONS OF MAXWELL THEORY 

FROM BORN-INFELD THEORY

There are nonlinear electromagnetic �eld theories, e.g. 

Born-Infeld theory of the charged particle [2, 3]. In this 

Born-Infeld theory the nonlinear Maxwell equations are 

obtained from the following action integral:
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On this basis, the equations obtained are supposed to 

be valid inside the electric particle. For �elds that are 

weak compared to the critical strength b, the Born-
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Infeld Lagrangian becomes the Lagrangian of classical 

Maxwell theory.

The well-known Born-Infeld Lagrangian is usually 

written as

L
BI
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maximum electric �eld strength (in the absence of magnetic 

�eld). If b2 is very much larger than E2 and c2 B2, then 

L
BI

I1 2
0 1

/  and we recover linear Maxwell theory. 

We remark here that in the limit as c , L
BI

 tend to zero, 

while cL
BI

 approach a well-de�ned, non-zero limit.

Since the Lagrangian density must be a Lorentz scalar, 

the electromagnetic �eld has only two gauge invariant 

Lorentz scalars, namely

F F F
ik
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Where F F
ik

ik* 1

2
 is the dual �eld strength tensor, 

Making c=1 we have that equation (15) can be expressed as
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The �eld equations for Born-Infeld theory are

F - F G/a

R
=0,

* 2ik ik

(18)

j ik k ji i kj
F F F 0 (19)

Here, we �nd that the symmetric energy-momentum 

tensor for that theory is given by
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In deriving this result, use has been made of the identity 
F F G*

.

So the energy, the momentum, and the Poynting vector, 

are now given, respectively, by
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ENERGY TENSOR OF THE 

ELECTROMAGNETIC FIELD

The volume density of the Lagrangian function in a region 

outside the electrical charges and currents is equal to

f (24)

Where

v
F F

v
F F g g0 0

4 4

a F F g g
0

(25)

And gik means the second-order metric tensor of space 

[1, 3, 4].

Let us evaluate the energy tensor Tik by the de�nition

[1, 5] in the following form:

1

2
gT

f g

g x
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g

x

ik ik l ik

l
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The tensor satis�es the energy conservation law in the 

tour-dimensional form:

T
i k
k
,

0 (27)
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Substituting eqn. (20) into eqn. (26) one obtains:

T
g

f g

g
ik ik

2

Because function f ( ) is independent of the derivatives 

of the metric tensor.

Thus one obtains:

T a
f

F F g f
ik i k ik

4
0

(28)

For the function f (·) given by the �rst two Taylor series 

terms we could write:

f f 1

Thus the energy tensor is equal to:

T T T
k
i

k
i

k
i

k
i| |

0 0
2

The trace of this energy tensor is equal to:

T T T T
0 0

4 4 (29)

because, in the case  = 0, the trace of the covariant-

contravariant energy tensor disappears:

T a F Fij
ij

|
0 0

4 0

The trace of the energy tensor is not negative. The trace 

is equal to zero if and only if the constant ‘ ’ vanishes.

According to the main Einstein equations, for energy 

�eld for which one can introduce the energy tensor [1, 3, 

5] it could be written:

R g R
G

c
T

ik ik ik

1

2

8
2

(30)

Contraction with respect to the indices ‘i’ and ‘k’ gives 

the Riemannian curvatura scalar of the electromagnetic 

�eld:

R
G

c
T

8
2 (31)

Substituting eqn. (29) into eqn. (31) one �nally obtains

R
G

c

32
2 (32)

The sign of constant k thus, take into account an electrostatic 

�eld forced by one charged particle. Such a �eld has 

spherical symmetry. The Riemannian curvature scalar 

for two-dimensional space, where only one external 

charge is situated, must be non-negative, R ≥ 0. Is not, 

the Riemannian curvature scalar tensor is negative, the 

space would have two radii of curvature, one positive and 

the other negative. This is impossible with respect to the 

assumed spherical symmetry of the electric �eld (forced 

by one electric charge), therefore:

≤ 0 (33)

In the case of a nonlinear electromagnetic �eld theories, e.g. 

Born-Infeld theory of the electromagnetic particle [5].

We can obtain an especial result. Und er a chiral approach, 

using equations (21, 22) with E = iB ,we obtain S = 0 and an 

electromagnetic term which correspond to a cosmological 

constant given by 8 1 8382 10
0

4 54 2G c/ . Volt . This 

allows the close connection between the electromagnetism 

and the gravitation (see annex).

CONCLUSIONS

Generalised Maxwell equations include the classical 

Maxwell equations of the electromagnetic �eld for weak 

�elds. The reluctivity and permittivity of free space 

are changed. If the constant ‘ ’ cannot be omitted, the 

Riemannian-Christoffel curvature tensor is not equal to 

zero. The constant ‘ ’ is not positive:  ≤ 0. In the case 

of a nonlinear electromagnetic �eld theory, e.g. Born-

Infeld theory of the electromagnetic particle [5], we can 

obtain an especial result. Under a chiral approach, with 

E = iB, we obtain S = 0 and an electromagnetic term 

which correspond to a cosmological constant.

ANNEX

This work discovers the space-time curvature carried by 

the electromagnetic �eld and provides a new uni�cation 

of geometry and classical electromagnetism. The new 

uni�cation contains the Einstein equations to handle the 

mechanics and permits the derivation of the Maxwell 

equations from the full second Bianchi identities. This 

is a purely classical work and quantum considerations 

are merely mentioned.
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Central to this work are the requirements that the 

electromagnetic �eld be expressed as a two form F 

and �t into general relativity under the demand that 

the total stress-energy tensor used in the Einstein 

equations contain the Maxwell stress-energy tensor 

T
Max

. In the notation with the conventions of [1] and 

in S.I. units T
Max

 is

T F F F F
Max k
i ji

jk jk
0

2
( )* *ji

where 0
128 85418782 10.  farad/meter is the electric 

vacuum permittivity.

Originally [2] general relativity was conceived as a 

uni�cation of mechanics and geometry that explained 

gravitation. It was just a bonus [3] that electromagnetism 

also entered the uni�cation via equation. If the Maxwell 

stress-energy tensor carried all the properties of the 

electromagnetic �eld, showing electromagnetism to be 

entirely reducible to mechanics, that would have been 

the end of the story.

However, the electromagnetic �eld has polarization or 

phase information that is not contained in the Maxwell 

stress-energy tensor [4]. Since Weyl’s conformal tensor, the 

totally traceless piece of Riemann curvature, is supposed 

to contain the phase or polarization information carried 

by gravitational radiation, one should expect it to do the 

same for electromagnetic radiation.

This is born out by the discovery of a piece of the 

Weyl conformal tensor that depends explicitly on the 

electromagnetic �eld and contains this polarization or 

phase information. It is denoted by T
Max 

C
F
, called “the 

local gravitational �eld of the electromagnetic �eld’’, 

and given by:

C
G

F F F F
jl
ik ik

jl jl jl
ik ik8
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Fik( )* * FF

ik

jl
ik ik

ik
F F

1
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where G 6 6726 10 11. Newton-meter2/kilogram2 is 

Newton’s gravitational constant, c 2 99792458 108.

meter/second is the speed of light, is a fully antisymmetric 

tensor. The traces in the expression for C
F
 are the Lorentz 

invariants of the electromagnetic �eld FikF
ik

= –2 (E2–

c2B2) and * FikF
ik 

= 4c (E∙B), where E is the electric 

�eld strength in Volt/meter and B is the magnetic �eld 

strength in Tesla.

The major discovery of this work is the expression for 

C
F
. The arguments that led to that expression are quite 

general and should defeat the criticism that C
F

was 

built on algebraically special black holes and will fail 

elsewhere. It would be useful to have a physical solution 

to the Einstein-Maxwell equations with non-zero currents 

that were not overwhelmed by symmetry. Then one could 

extend this analysis into the currents and see how the full 

second Bianchi identity works there. Further successful 

examples will give knowledge and comfort; but will not 

prove the generality for C
F

that is claimed here. However, 

a single credible counterexample or the observation of a 

magnetic monopole will vitiate this work.

The small coupling constant required by the Einstein 

equations, 8 1 8382 100

4

54 2G

c
. ,Volt permits the 

superposition of electromagnetic �elds. It has also led 

many to believe that the gravitational consequences of 

electromagnetism are insigni�cant.

Nothing could be further from the truth. It is a matter of 

principle to unify classical electromagnetism and gravitation 

and the curvature-based uni�cation presented here allows 

the electromagnetic �eld to appear as an algebraically 

special piece of curvature. This ful�lls the nineteenth 

century speculation that gravity and electromagnetism 

are both aspects of Riemann curvature.

This theory is not experimentally vacuous. The smallness 

of the coupling constant merely means that it could be along 

time before curvature detectors are suf�ciently sensitive 

while withstanding an intense electromagnetic �eld; or 

suf�ciently sensitive over very long distances having less 

intense �elds. One wonders about the consequences of 

C
F

in the environment around very strongly magnetised 

neutron stars [7]. Further, what are its consequences in the 

Jacobi equation for geodesic separation that might apply to 

trans galactic travel? When two electromagnetic �elds are 

superposed could the interaction terms in the curvature have 

any bearing on the problem of emission or absorption?

The physical geometry of space-time is determined by 

specifying the metric tensor or the full curvature tensor 

[6]. The Einstein equations, which link classical mechanics 

to physical geometry, may be written as

M
G

c
T T

1 4

8 1

2

1

4

and

M
G

c
T

2 4

8 1

12
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where T is the total stress-energy tensor and T its trace. 

There is no mention of Weyl’s conformal tensor that would 

complete the speci�cation of the physical geometry.

Placing constraints on Weyl’s conformal tensor is 

the novel feature of this work. Such constraints are 

meant to limit the solutions to those with a physical 

gravitational �eld. If the constraints are too limiting 

and they forbid physical solutions, then they will have 

to be altered. Similar constraints might deal with the 

embarrassing number of Ricci �at universes, which 

may or may not describe gravitational radiation. It is 

an open question whether the Einstein equations will 

have to be extended to the full curvature to handle 

gravitational radiation.
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