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RESUMEN

La relación cuántica m c0
2

0  puede ser considerada como la equivalencia entre dos expresiones para la energía en 

reposo de la partícula, si 0 se considera la velocidad angular de giro de partículas en su marco en reposo. La invariancia del 
intervalo relativista espacio- tiempo ds c dt dr2 2 2 2 para tal movimiento de espín (isotropía espacial) conduce al impulso 

de espín S
z

/ 2 para todas las partículas sin estructura, independientemente de sus valores de masa. La inercia es una 
propiedad intrínseca debido al movimiento de spin de las partículas. Los signos de los valores de masa que se producen 
en las soluciones de la ecuación de Dirac podrían estar relacionados con la orientación del espín, según lo sugerido por 

la relación fundamental m c0
2

0 . Además se re�ere al electrón, y más concretamente con dos de las principales 
propiedades: su función de onda compleja, y su giro intrínseco. En su interpretación estándar no hay una clara imagen 
del espacio real de lo que es oscilante en la onda, o lo que está girando en el espín. De hecho, es la creencia generalizada 
de que ningún modelo sencillo puede dar cuenta de la rotación de espín de los electrones. Por el contrario, en el presente 
trabajo se muestra que un crudo modelo mecánico de rotación de vórtices coherentes explica cuantitativamente no sólo el 
espín, sino también la propia función de onda. Las consecuencias de esto son examinadas en este trabajo.
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ABSTRACT

The quantum relationship m c0
2

0  may be regarded as the equivalence between two expressions for the rest energy 

of the particle, if
0

is considered as the spin angular velocity of the particle in its rest frame. The invariance of the 

relativistic space-time interval  ds c dt dr2 2 2 2  to such a spin motion (space isotropy) leads to the spin momentum

S
z

/ 2  for all structureless particles irrespective of their mass values. The inertia is an intrinsic property due to the 

spin motion of the particles. The signs of the mass values occurring in the solutions of the Dirac equation might be related 

to the orientation of the spin motion, as suggested by the fundamental relationship m c0
2

0
. In addition, it deals 

with the electron, and more speci�cally with two key properties: its complex wavefunction and its intrinsic spin. In the 

standard interpretation, there is no clear real-space picture of what is oscillating in the wave, or what is rotating in the 

spin. Indeed, it is generally believed that no simple model of rotation can account for the spin of the electron. On the 

contrary, the present paper shows that a crude mechanical model of coherently rotating vortices can account quantitatively 

not only for spin, but also for the wavefunction itself. The implications of this are discussed in this paper.
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SPIN AND RELATIVITY

As we know, the spin cannot be motivated in the frame of 
classical mechanics. Even in the nonrelativistic quantum 

theory, the nature of spin remains unclear. The spin results 
solely from Dirac’s equation [1]. Although the Pauli and 
Dirac matrices undoubtedly show the spin existence, 
there is some mystery as to the physical origins of and 
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in the visualization of the spin [2, 3]. One may says that 
spin is an intrinsic property of the matter. It must have 
to do with relativity even though this connection is not 
entirely understood [4].

In this paper, I shall try to sketch a simple motivation 
for the existence of spin starting from the fundamental 
relationship, and namely:

m c0
2

0
(1)

where m0 is the rest mass and m0c2 the rest energy of 
the particle.

If the particle is considered as being a physical torus 
spinning with angular velocity 0 (Figure 1a, and 1b), 
the right-hand side of equation (1) should be regarded as 
another relativistic expression for the rest energy.
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(b)
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Figure 1. a) A spinning reference frame. b) A torus 
electron model

We may argue the existence of the spin motion in the 
space-time frame of the particle as follows: unlike 
space coordinates, time is not directly measurable 
(observable). The simplest way to estimate time is 
to consider uniform motion. One can obtain time by 
comparing covered distances ([5]: time is the number 
of motion). This leads to the necessity of introducing 
motion in the space-time reference frame. The only 
allowed motion in the rest frame of the particle should 
be that of rotation (spin).

Therefore, it is reasonable to assume that the rest energy 
of a particle is related to its spin motion, which is only 
allowed in that system [3]. This reasoning allows us to 
regard 

0
 as an equivalent expression for the rest 

energy of the particle.

The particle as a moving object must also obey another 
fundamental relationship, namely the relativistic elementary 
“space-time interval” between the physical events of the 
particle:

ds c dt dr2 2 2 2 (2)

Every physical process, such as translation, rotation, etc., 
must be related to expression (2). The invariance of ds2

to uniform translation (space homogeneity) leads to the 
Lorentz corrections [6].

Let us now consider the uniform rotation (spin) of the 
reference frame, with angular velocity in x,y-plane 
around the z-axis, as shown in Figure 1. In this case, 
we have

x x y y z z

t t t dt
d

dt
const

'; '; ';

' ; ;0

and ds2 (equation 2) becomes

ds c r ydx xdy dt dr' ( ) ( )2 2 2
0

2

0
22 (3)

where r x y2 2 2  represents the radius perpendicular 

to the rotation z-axis, i.e. the distance from origin to the 
points P, P’, etc. (Figure 1 ).

Expression (3) can easily be derived.[7] Note that the linear 

velocity u r 0
must obey the restriction imposed by 

the special relativity, i.e. c r2 2
0

2
. For the limit case 

c r 0 , the rotating space becomes ‘closed’ with the 

lateral radius r . This is all what Fock mentioned [7].

But such a rotating empty space is physically meaningless. 
We must therefore actually ascribe this rotation to the 
particle situated in the origin of this space. For that 

particle, the set of points P, P’, etc. for which c r 0 ,

should be considered the closure (frontier) of the particle. 
We do not know too much about the shape of a spinning 
particle, considered as being structureless, but we can at 
least de�ne for it a radial extension equal to:
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r c / 0 (4)

From equations (1) and (4), we have:

r m c
c

/ 0
 (Compton radius). (5)

This result shows that all structureless particles with rest 
mass cannot be pointlike. For the limit case, c r 0 ,

expression (3) becomes:

ds xdy dt ydx dt dt dr' ( / / )2
0

2 22 (6)

We have already mentioned the invariance of to the uniform 
translation (space homogeneity). Let us now consider the 
invariance of ds2 to the uniform rotation (space isotropy). 
In other words, for a noninteracting spinning particle, 
space must remain unaffected by the uniform rotation. 
From the invariance condition ds’2 (equation 6) ds2

(equation 2), we obtain:

2 0
2( / / )xdy dt ydx dt c . (7)

If we use now the fundamental relationship from equation 
(1), we have

S m xdy dt ydx dt m r u
z z0 0 2( / / ) / , (8)

where S
z
 is the classical expression for the z-component 

of angular momentum. The result is interesting. This 
mainly shows that the / 2  value of the angular 
(spin) momentum preserves the space isotropy. It must 
be universal and characteristic for all structureless 
particles with �nite rest mass, independent of their 
mass values.

If the two possible rotations around z-axis are considered 

( ; )0 0 0  corresponding to x y and y x

rotations, both the / 2  values conserve the space 

isotropy. The time reversal t -t in (8) leads to / 2

value. Note that for 0  values equation (1) becomes 

0

2m c
o

. The mass values ±m0 occurring in 

Dirac’s equation might actually be related to the rotation 

sense of the spin angular velocity 0 .

Moreover, according to (1) the rest mass m0 is tightly 
connected with the spin motion represented by 0.
Therefore, a structureless elementary particle with a 
�nite rest mass and radial extension behaves as a small 
mechanical top, its inertial properties not necessarily 
being conditioned by the gravitational interaction with 
the matter in universe (Mach’s principle).

A SEMICLASSICAL MODEL

FOR ELECTRON SPIN

First, consider an electron with its center of mass at 
rest, but spinning. The simplest possible model is a 
spinning solid torus (�gure 1b). Based on the goal of 
having this describe the electron wavefunction, one 
expects that the angular velocity is given by the Planck-
Einstein relation E . Since this is a real physical 
rotation, the zero of energy is not arbitrary as in standard 
nonrelativistic quantum mechanics, but must be given 
by the relativistic rest energy E mc2 . (This also has 
the property of being relativistically covariant when 
we transform later to a moving reference frame.) For 
rotation of a solid torus of radius R, the linear velocity 
on the equator is u R Rmc2 / . But clearly, u can 
be no greater than the speed of light c. This is a natural 
cutoff, and provides an estimate of the maximum size 
of this spinning ball:

R c mc R
cmax / / (9)

This is the Compton wavelength R
c

of the electron 
˜0.4pm, which is much smaller than the typical å scale 
that characterizes atomic orbitals (1å=100pm). If we 
want to model an extended electron state, then clearly 
R

c
 is too small.

Consider instead an extended state consisting of a parallel 
array of torus vortices (see �gure 1), each a solid body 
of radius R

c
 rotating around its axis at mc2 / . For 

simplicity here, assume that there are N identical vortices, 
each of mass mv = m/N. The angular momentum of each 
vortex is then given by

L I m R N
cv v

1

2
22 / , (10)
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where we have taken the moment of inertia I mR
1

2
2

for a cylinder of uniform mass density. This is a crude 
semi-relativistic model, but it does in fact give the proper 
value for the total angular momentum for the electron, 
S / 2 .

One can also estimate the magnetic moment of the 
electron from this model. Treating the rotating charge 
per vortex q e Nv /  as a current i qv v / 2 , one 
obtains simply

Ni A e R e m
c Bv v / /2 22

(11)

where µ
B
 is the Bohr magneton and A

v
 is the cylindrical 

cross sectional area per vortex. Again, this is the correct 
result, perhaps fortuitously, but it does suggest that this 
crude model may incorporate much of the essential 
physics.

These calculations require only that all of the torus are 
rotating at the same frequency around parallel axes. 
But in addition, it is reasonable to assume a coherent 
state where all of them are rotating in-phase as well, 
as suggested in �gure 1. This requires a rotating vector 
�eld A(r,t). Furthermore, it is not necessary to assume 
that the vortices have identical masses. More generally, 
one could have a density function (r), which would go 
as the square of the �eld amplitude A(r), analogously to 
the energy density in electromagnetic waves.

Now the phase angle ( ) /t Et  is constant across the 
entire electron, but that can also be relaxed. Consider what 
happens when we Lorentz-transform to a reference frame 
moving with velocity v. Locations that are in phase in the 
rest frame will not in general be in phase in the moving 
frame. The proper way to deal with this is to make the 
phase angle relativistically invariant, so that

Et E t p r (12)

where in the usual way E mc mc m2 2 21

2
v ,

p m mv v  is the momentum, 1 2 2
1 2

v /
/

c ,

and the approximate forms are for v << c. This is invariant 
because (E/c, p) and (ct, r) are relativistic 4-vectors, and 
the phase angle goes as their inner product. So now the 
rotating phase angle takes the form

( , ) ( ) /r t Et p r (13)

This corresponds to a plane wave with wavelength h/p,
which is well known as the de Broglie wavelength. Note 
that this follows directly from the earlier assumption that 
the rotation frequency is given by mc2 / .

Once we have a wave satisfying the Einstein-deBroglie 
relations, the rest of quantum mechanics follows 
naturally. We have a rotating vector �eld given by a 
spin axis (assumed to be uniform), an amplitude A(r,t), 
and a rotating phase angle (r,t). If we compare to the 
standard complex wavefunction in quantum mechanics, 

(r,t) = exp(i ), and map A and  onto  and ,
we have a rotating wavefunction which satis�es the 
time-dependent Schrödinger equation.

For example, consider a rotating vector field of the 
form

A r t A u kz t u kz t
x y

( , ) cos( ) sin( )0 , (14)

(u
x
 and u

y
 are the unit vectors in the x- and y-directions), 

which represents a plane wave traveling in the z-direction 
with spin also in the z-direction (�gure 2). This is a circularly 
polarized transverse wave, with either positive or negative 
helicity depending on whether the plus or minus sign is 
chosen. For �xed t, the tip of the vector follows a helix; 
for �xed z, circular rotation at an angular frequency 
of a vector of length A0.

Now de�ne arctan /A A kz t
y x

, and

( , ) exp( ) exp ( )r t A i A i kz t , (15)

and substitute this into the time-dependent Schrödinger 
equation with the rest-energy explicitly added:

i t H m mc V r/ / ( )2 2 22 (16)

The result is the simple, correct relation (for v<<c) that 
2 2 22k m mc/ .  Note also that the complex 

conjugate of  might seem to yield negative energy, but 
really just represents the spin of the opposite sign.

Thus far the model has been limited to a single plane 
wave, but electrons are generally present in bound states, 
with standing waves instead of travelling waves. Consider 
for simplicity the one-dimensional particle-in-a-box, 
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with the electron con�ned between z = 0 and z = L. The 
solution takes the form of discrete bound states given 
by the complex wavefunctions 

n
 and equivalent vector 

�elds A
n
:

n
n z L i tsin( / )exp( ) (17)

A n z L u t u t
n x y

sin / cos sin (18)

Here n=1 corresponds to the ground state and n=2, 3,... 
to the excited states, and the quantized energies E

n
  are 

given as usual (but with the mc2 offset) by

E mc k m mc n L m
n n

2 2 2 2 2 22 2/ ( / ) / (19)

and as before the ± corresponds to the two spin states. 
Note that this vector wavefunction has separated into two 
factors, the usual standing-wave envelope and the rotating 

Figure 2. Picture of real-space helical wave representing electron with spin. Evolution of helix for wave propagating in 
z-direction.

z

x

y

phase vector. The negative values of the sine (for n>1) 
correspond to 180º shifts of the rotating phase.

DISCUSSION AND CONCLUSIONS

The wave example given above is based on a helical 
transverse wave, which is similar in form to a transverse 
electromagnetic wave which is circularly polarized like 
a chiral wave. Indeed, such a helical TEM wave carries 
angular momentum, and forms the classical limit of a 
photon [9, 10], with spin  pointing along the direction 
of motion. However, unlike the case of the photon, one can 
transform to the rest frame of the electron, and from there 
to any other direction. In general, the electron spin axis 
would not be parallel to the momentum, and the rotating 
spin �eld vector would follow a general cycloidal motion 
rather than a simple helix. The spin and translational 
motions are essentially decoupled in this model (no spin-
orbit interaction).

This model of coherently rotating vortices appears to 
account for the complex wavefunction of the electron [6]. 
This suggests that the spin picture may be substantially 
more general than simply a single electron, and that spin is 
fundamental to all of quantum mechanics. In that regard, 
it may not be a coincidence that all fundamental quantum 
particles seem to have spin. Certain mesons have spin-0, 
but they can be regarded as composites of spin-½ quarks. 
And certainly atoms with spin-0 show quantum effects. 

It is likely that the spins of the constituent components 
contribute their angular phase references to the composite 
system, even if the total spin cancels out.

One may speculate as to the physical basis for such a 
coherent vortex model. It seems to correspond to a very 
rigid state of an intrinsically rotating �uid. Such a rigid 
state may indicate a very strong cohesive energy associated 
with long-range phase coherence among the vortices. Since 
the lowest excitation of an electron involves creation of 
an electron-positron pair, this cohesive energy might be 
expected to be ~1MeV, larger than the rest energy of the 
electron itself.

Speculating even further, the existence of such a highly 
rigid state would have important implications for quantum 
measurement. Any local interaction that would alter 
the energy of part of an electron wavefunction would 
jeopardize this cohesive energy. This, in turn, would create 
an instability leading either to the rest of the electron 
being pulled into the interaction region, or alternatively 
to the expulsion of the electron from this region. This 
suggests a real dynamical process which may provide a 
physical basis for the “collapse of the wavefunction” in 
quantum measurement.

Finally, if this rotating spin �eld is mathematically 
equivalent to the usual Schrödinger equation, is it really 
just a matter of preference which representation we 
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choose? Not entirely, because a real physical rotation, 
with a de�nite frequency and spatial �ne structure, 
should be measurable. If one probes the behavior of 
electrons at frequencies ~1020 Hz = mc2/h, particularly 
with a circularly polarized probe, one should expect to 
see a sharp resonance in some sort of spectral response, 
perhaps associated with spin-�ip of the electron in a 
large magnetic �eld. Furthermore, the �ne structure of 
the spin model identi�ed a periodicity on the scale of
2 2R mc

c
/ , which would correspond to a momentum 

transfer k mc c1 5. /MeV . It would be interesting 
to see whether relevant measurements are consistent 
with the model described in this paper.

It is somewhat surprising that a simple mechanical 
model for spin was not presented in the early days of 
quantum mechanics. It seems that early researchers 
were discouraged by apparent rotation velocities greater 
than c [8]. It may be that the distributed coherent vortex 
model provides a way around these dif�culties. More 
recently, Ohanian [9] showed that the relativistic Dirac 
equation is consistent with a distributed circular energy 
�ow on a scale larger than R

c
, which provides the basis 

for the electron spin and magnetic moment. The present 
semiclassical model is certainly cruder than the Dirac 
equation, but also reproduces these results within a more 
intuitive physical picture.

In conclusion, a new semiclassical picture for electron 
spin is presented, in which a spinning vector �eld, 
rotating at mc2/h, is organized into a coherent array 
of rigidly rotating vortices on the scale of R mc

c
/ .

The vector �eld F maps onto the quantum wavefunction 
, providing for a uni�cation of spin and quantum 

mechanics. It is further suggested that the coherent 
nature of this spin �eld may be associated with a cohesive 
energy, which in turn may play a key role in quantum 
measurement. While the speci�c details of this model 
remain crude, its clear intuitive physical picture may 
help to stimulate further research along similar lines. 
By dealing with speci�c real-space models, it may be 

possible to remove much of the abstraction and mystery 
from quantum theory.
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