
Ingeniare. Revista chilena de ingeniería, vol. 18 Nº 1, 2010, pp. 76-83

MODEL-DRIVEN REVERSE ENGINEERING AND PROGRAM COMPREHENSION:
AN EXAMPLE

INGENIERÍA REVERSA Y COMPRENSIÓN DE PROGRAMAS DIRIGIDA POR
MODELOS: UN EJEMPLO

Eugenio G. Scalise P.1 Jean-Marie Favre2 Nancy Zambrano1

Recibido 3 de abril de 2009, aceptado 16 de abril de 2010
Received: April 3, 2009 Accepted: April 16, 2010

RESUMEN

En este artículo se presenta un ejemplo que describe cómo la Ingeniería Dirigida por Modelos (IDM) puede ser aplicada
al desarrollo de herramientas para la ingeniería en reverso y comprensión de programas. Se seleccionó como caso de
estudio la herramienta CodeCrawler, específicamente la funcionalidad denominada polymetric view, desarrollada mediante
tecnologías y técnicas de la IDM. Para ello, se emplearon dos metamodelos (entrada y salida) y transformaciones a nivel de
los metamodelos que permiten generar la información de un polymetric view asociado a un proyecto de software, utilizando
la información extraída del código fuente. Las tecnologías utilizadas para el desarrollo del ejemplo, las relacionadas con
el Eclipse Modeling Project, específicamente el lenguaje de transformación ATL y el lenguaje KM3. El enfoque seguido
para obtener la implementación resultante puede ser utilizado para desarrollar una herramienta de ingeniería en reverso y
comprensión de software mediante técnicas de la IDM, incorporando el vocabulario del dominio en la implementación.

Palabras clave: Ingeniería dirigida por modelos, ingeniería en reverso, comprensión de programas, modelos, metamodelos,
transformaciones entre metamodelos, CodeCrawler, ATL, KM3.

ABSTRACT

This paper presents an example of how Model-Driven Engineering (MDE) can be applied to the development of tools
for reverse engineering and program comprehension. The tool CodeCrawler was selected as an example; in particular,
the polymetric view feature was computed using MDE techniques. To this end, two metamodels were proposed (source
and target) and meta-level transformations that were used to deduce the information of a polymetric view associated to
any software project (source code). The technologies selected to develop the example were those related with the Eclipse
Modeling Project, specifically the ATL and the KM3 languages. The approach used in this paper to obtain the implementation
can be used to develop all the features of a MDE-oriented software comprehension tool, obtaining a domain-oriented
implementation.

Keywords: Model-driven engineering, MDE, reverse engineering, program comprehension, models, metamodels,
transformations between metamodels, CodeCrawler, ATL, KM3.

1 Universidad Central de Venezuela. Facultad de Ciencias. Escuela de Computación. Centro ISYS. Caracas, Venezuela.
E-mail: eugenio.scalise@ciens.ucv.ve; nancy.zambrano@ciens.ucv.ve

2 Universidad Joseph Fourier (Grenoble 1). Equipo Adele. Laboratorio de Informática de Grenoble (LIG). Grenoble, Francia.
E-mail: Jean-Marie.Favre@imag.fr

INTRODUCTION

Software evolution is one of the most significant and
recurrent problems in software engineering. This is a
consequence of the fast changes over the last decades, at
technological level and in software development methods
and techniques; subsequently, techniques that support
software evolution are a necessity, especially for big
software (million lines of code).

Today, as technological changes are so fast, some
technologies become obsolete quickly, even before they
reach an appropriate maturity level. The Object-Oriented
(OO) paradigm was considered to be a solution for several
software evolution and maintenance problems, but the
empirical evidence is proving that OO is creating new
evolution problems and must be used with care to ensure
that the complexity of the maintenance is not greater than
the complexity of traditional systems.

Scalise, Favre and Zambrano: Model-driven reverse engineering and program comprehension: an example

77

In addition, the legacy software concept has changed over
time. In the production systems of the industrial world,
where the systems in production are, the legacy term
has become common. Over recent years, it has become
normal to use the “legacy” term to qualify Java or C++
software, and hence it can be said that the evolution of OO
software and traditional software (non structured code in
COBOL or similar) have the same level of importance.
In the past, legacy software were monolithic systems,
whereas nowadays almost all software is a combination
of distributed components, using standard middleware
technologies and enterprise frameworks, which causes
problems in the evolution and maintenance process.

In the 80s techniques were proposed for the comprehension
and evolution of big software products like reengineering,
reverse engineering and restructuring. Chikofsky and
Cross [5] declared that reverse engineering is the process
of analyzing a subject system to identify the system’s
components and their interrelationships and create
representations of the system in another form or at a higher
level of abstraction. Reverse engineering is a process of
examination, not a process of change or replication. The
key objective of reverse engineering a software system
is to increase the comprehensibility of the system, to
facilitate the maintenance and new developments. Reverse
engineering is also useful to cope with the complexity of
a system with the help of alternative views, recover lost
information, synthesize higher abstractions, facilitate reuse,
deduce software metrics and detect side effects.

At present there are several tools for software comprehension
that can be used to apply reengineering, reverse engineering
and other techniques. These tools can be used to visualize
artifacts, compute software metrics and work in other
properties. Examples of these tools are: SHriMP (Simple
Hierarchical Multi Perspective) [19], Rigi [20], Portable
BookShelf (PBS) [11], Moose [7], CodeCrawler [14-15].
More tools are listed in [17].

In this paper we show how the model driven engineering
(MDE) approach can be used to develop software
comprehension tools. In particular, we describe how a
functionality of the CodeCrawler tool can be developed
using an alternative approach; this approach proposed
could be applied to any other tool.

This paper is divided in four major parts. The first section
describes the general aspects of the CodeCrawler tool,
including the format used to represent the information,
and the Polymetric View concept, which is used in the
example (study case) of the paper. The next section
describes the study case by means of the details of the
feature to be implemented, the proposed metamodels
(source and target) and the transformation between them.
After the study case there is a brief discussion of our
findings and related work and finally, there is a section
with the conclusions of the paper.

THE CODE CRAWLER TOOL

CodeCrawler [14-15] is a lightweight software visualization
tool, the first implementation of which dates back to 1998.
It has evolved into an information visualization framework
and has been customized to work in several contexts
(website reengineering, concept analysis and more) keeping
a strong focus on software visualization (SV).

CodeCrawler is considered a language independent SV
tool, because it uses the Moose reengineering environment
[6] that implements the FAMIX metamodel [21], which
models software written in C++, Java, Smalltalk, Ada,
Python, COBOL, and others.

Figure 1 shows the general architecture of CodeCrawler
where the core acts as a bridge between the visualization
engine and the metamodel. This architecture which separates
the three main parts (core, metamodel, visualization

Figure 1. Architecture of CodeCrawler.

Ingeniare. Revista chilena de ingeniería, vol. 18 Nº 1, 2010

78

engine) of a software visualization tool allows for higher
flexibility and greater extensibility.

The next sub-sections describe two elements of
CodeCrawler that are use in this paper: the FAMIX
metamodel as the standard format that represents
information extracted from source code and the Polymetric
View concept, which will be used in the study case.

The FAMIX Metamodel
FAMIX [21] is a metamodel for modeling object-
oriented software. The main goal of FAMIX is to support
reengineering activities in a language-independent way.
The aim is not to cover all aspects of all languages, but
rather to capture the common features that we need for
reengineering activities, so tools can be easily reused
for multiple target languages.

FAMIX was proposed as a part of the Moose system [6]
and afterwards was used in the CodeCrawler system. The
requirements considered for the design of the FAMIX
metamodel included support for multiple languages,
support for the whole reengineering life cycle, extensibility,
scalability and information exchange.

Figure 2. FAMIX core (adapted from [14]).

The FAMIX metamodel defines a set of classes associated
to the source code entities available in a software project:
packages, classes, methods, attributes, variables, formal
parameters, calls, access, etc. Figure 2 shows the core main
classes of the FAMIX metamodel and their relationships.
The complete metamodel is available in [14] and a draft
of the version 2.1 is available in [8].

Polymetric View
A polymetric view [14] is an approach to the construction
of lightweight visualizations enriched with software
metrics. A polymetric view is a two-dimensional
visualization that uses nodes (rectangles) to display
software entities or abstractions of them and uses edges

to represent relationships between the entities. This is
a widely used practice in information visualization and
software visualization tools. This basic visualization
technique is enriched by rendering up to 5 metric
measurements on a single node simultaneously:

– Node Size: The width and the height of a node can
each render one metric measurement. The larger
these measurements are, the larger the node is in
one or both of the dimensions.

– Node Color: The color interval between white
and black can be used to render another metric
measurement. The convention is that the higher the
metric value is, the darker the node is. Thus light
gray represents a smaller metric measurement than
dark gray.

– Node Position: The X and Y coordinates of the
position of the node can also reflect two metrics
measurements. Not all layouts can exploit position
metrics, as some of them implicitly dictate the
position of the nodes (for example, a tree layout).

An actual polymetric view depends on three ingredients:
a layout (the choice of the displayed entities and their
relationships), a set of metrics (up to 5 metrics for each
node), and a set of entities (parts of the system that will
be visualized).

A MDE APPROACH TO POLYMETRIC VIEWS

In the previous section we described the Polymetric View
(PV) concept that is used to display graphs where each
node is related to an source-code entity (class, method,
variable, package, etc.) and can have up to five associated
metrics (position x-y, width, height and color).

We selected the Inheritance Classification, a PV that
shows a tree layout of nodes enriched with metrics
information. In this PV the nodes are classes, while the
edges represent the inheritance relationships between
them. The size of the nodes reflects the number of
methods added –NMA– (width) and the number of
methods overridden –NMO– (height) of the classes,
while the color tone represents the number of methods
extended –NME– of the class. In this PV the position of
the nodes does not reflect metric measurements, as the
nodes’ position is implicitly given by the tree layout.

The study case presented in this paper aims to show how
we can use MDE techniques to develop a functionality of
a well known tool in the program comprehension domain.
We chose to compute the information of a PV starting

Scalise, Favre and Zambrano: Model-driven reverse engineering and program comprehension: an example

79

from a standard representation of a software system (in
FAMIX, or a similar format) using a different approach
than the traditional process used in the common tools
available. In CodeCrawler the information of a PV is
stored in a graph, which is the input of a visualization
engine (see Figure 1).

The traditional approach used to develop this kind of
tool is usually ad-hoc and a mixture of control code
and domain logic; on the other hand, the approach
proposed in this paper promotes a programming style
that takes advantage of the domain concepts (in this case,
source-code entities, graph elements or PV information,
described in the metamodels) and the control is the
responsibility of the transformation language engine
and the host language used to implement the GUI. In
this programming style, the models became more active
in software development, unlike traditional software
development where the models are used as documentation
artifacts or implementation guidelines.

In order to reach the main objective, first, we must define
the source and target metamodels, which can be used in a
program written in a model-transformation language, to
produce a model that conforms to the target metamodel
(graph) starting from a model that conforms to the source
metamodel (source code, FAMIX).

The next sub-sections describe the source metamodel
(source code), the target metamodel (graph with metrics
info) and the transformation that computes the PV
information starting from the source code model.

Source Metamodel: Source Code
In order to apply MDE techniques, in this example we
need a metamodel to define the structure of the information
extracted from source code. For this example, a simplified
metamodel of Java programs is proposed. This metamodel
includes the information of the classes and their methods.
Figure 3 shows the metamodel expressed in UML and it
includes the main entities (Package, Class and Method)
and the relationships between them. For the sake of

simplicity we have selected just the relationships needed
to compute the metrics of the chosen PV. We chose this
simple metamodel instead of FAMIX, because FAMIX
could be too big for the example.

The metamodel expressed in UML notation is useful to
understand the entities modeled and their relationships;
nevertheless, a representation in a language more suitable
to be processed by a program is required. In order to
do this, we propose an alternative representation in the
KM3 language.

KM3 [12] is a textual language to specify metamodels,
and it can be used to derive metamodels represented in
the standard Ecore [9]. KM3 is available as a part of the
Atlas Model Management Architecture (AMMA) project
[13] developed as a part of the Eclipse Modeling Project,
which also includes Atlas Transformation Language
(ATL) [1]. The aim of ATL is to provide a language
and an environment to define transformations between
metamodels.

Figure 4 shows the source code metamodel of Figure 3,
expressed in KM3.

Target Metamodel: Graph
The visualization engine of CodeCrawler requires a
graph that contains all the information to be displayed.
Additionally it requires a layout that is deduced from the
kind of PV to be used. The visualization graph contains
the information about all the nodes and edges, which
are associated with source-code entities in the definition
of the PV. The graph metamodel used in this example is
presented in Figure 5 (UML) and Figure 6 (KM3).

In this example, each node is associated with a source-code
class and the edges represent inheritance relationships.
The graph elements also contain the attributes of the PV.
Inheritance Classification just needs the width, height and
color of each node, the values of which are respectively
the metrics NMA, NMO and NME.

Figure 3. Source code metamodel (UML).

Ingeniare. Revista chilena de ingeniería, vol. 18 Nº 1, 2010

80

package SourceCode {
 class Package {
 attribute name : String ;
 reference classes[1-*] container :
 Class oppositeOf “package” ;
 }
 class Class {
 attribute name : String ;
 reference “package” :
 Package oppositeOf classes ;

reference superclass[0-1] :
 Class oppositeOf subclasses ;

reference subclasses[*] :
 Class oppositeOf superclass ;

reference methods[*] container :
 Method oppositeOf “class” ;

reference allSuperclasses[*] : Class ;
reference allInheritedMethods[*] : Method ;

 }
 class Method {

attribute name : String ;
reference “class” :

 Class oppositeOf methods ;
reference invocations[*] : Method ;

 }
}
package PrimitiveTypes {
datatype String;
}

Figure 4. Source Code Metamodel (KM3).

Figure 5. Graph metamodel (UML).

The definitions of each metric used are the following:

– Number of Methods Added by a subclass (NMA): A
method is defined as an added method in a subclass
if there is no method of the same name in any of its
superclasses [16].

– Number of Methods Overridden by a subclass (NMO):
Number of methods defined in a subclass with the
same name of a method in one of its superclasses [16].

– Number of Methods Extended (NME): Number of
methods redefined in subclass by invoking the same
method on a superclass [14].

package GraphData {
class Graph {

 attribute title : String ;
 reference elements[*] container :

 GraphElement ;
}
abstract class GraphElement {

 attribute label[0-1] : String ;
 attribute figure[0-1] : String ;

}
class Node extends GraphElement {

 attribute width[0-1] : Integer ;
 attribute height[0-1] : Integer ;
 attribute color[0-1] : Integer ;
 attribute x[0-1] : Integer ;
 attribute y[0-1] : Integer ;

}
class Edge extends GraphElement {

 attribute width[0-1] : Integer ;
 reference source : Node ;
 reference target : Node ;

}
}
package PrimitiveTypes {

datatype String;
datatype Integer

Figure 6. Graph Metamodel (KM3).

Scalise, Favre and Zambrano: Model-driven reverse engineering and program comprehension: an example

81

The metrics are computed using the attributes and
relationships of the source-code metamodel. An instance
of the graph metamodel is derived from the source-code
metamodel by means of a transformation. The next
sub-section describes the transformations related to this
example.

Transformations between the metamodels
In order to generate a graph model with the computed
metrics of the PV, we need a transformation that takes as
input the source-code metamodel, the graph metamodel
and a model conform to the source-code metamodel. This
transformation must generate a model that conforms to
the target metamodel (graph).

We chose the Atlas Transformation Language (ATL) [1]
to write a transformation that checks all the entities of the
source model (a representation of a program that conforms
to the source-code metamodel) and produces the entities
of the target model. Additionally, the transformation uses
a set of helpers to compute every metric needed for the
PV of the example (Inheritance Classification).

Figure 7 contains the main transformation called
Package2Graph and Figure 8 contains the rule
Class2Node.

The rule Package2Graph (Figure 7) applies to each
package of the source code (line 2 to 3) and generates
a graph (line 5 to 11) with the name of the package
(line 6) and a sequence of elements (lines 7 to 10): nodes
(line 8) and edges (line 9).

1
2
3
4
5
6
7
8

9

10
11
12

 rule Package2Graph {
 from

p: SourceCode!Package
 to

g: GraphData!Graph (
 title <- p.name,
 elements <- Sequence {
 p.classes->collect

(c|thisModule.resolveTemp(c,’class_node’)),
 p.classes->collect

(c|thisModule.resolveTemp(c,’class_edges’))
 }

)
 }

Figure 7. ATL Transformation: rule Package2Graph.

The rule Class2Node (Figure 8) applies to every class
of the source-code model (line 2 to 3) and generates
one graph node per class (line 5 to 13) and as many
edges as the number of subclasses of the current class
(lines 14 to 21). The node attributes width, height and
color are associated with their respective metrics (lines
8 to 10).

The metrics are computed by three helpers that are shown
in Figure 9. The attributes x and y are not computed by
the transformation because this PV does not use this
information (the position of each node is deduced from
the tree layout). Some edge attributes, in particular the
width, are not needed in this PV.

To generate another PV, the process to follow is similar
to that applied in this example. The main differences are
the values (metrics) used to the attributes of a node. This
process can be generalized and automated to any PV, using
an environment to configure PVs, selecting the metrics
from a list. The metrics could be in a repository. The ATL
transformation to generate the information about a PV could
be automatically generated by means of a GUI, a domain
specific language (DSL) or a high-order transformation.

RELATED WORK

There are different research groups using MDE techniques
in the software evolution domain. Bézivin and his colleagues
[3] show how to increase the tool interoperability; in
particular, a general metamodel for the data of bugtracking
tools is definied and an example is presented where the
data of several tools (Bugzilla, Mantis and Excel) is
translated between them. In [2], Antoniol and his colleagues
combine data extracted from source code, CVS repositories
and bugtracking tools using metamodels. In [18] MDE
techniques were used to visualize bugtracking data.

Bull and his colleagues [4] use MDE techniques to assist
with the creation of highly customizable interfaces for
software visualization; in particular, an example is presented
where some Java source code metrics are computed

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

 rule Class2Node {
from

 c : SourceCode!Class
to

 class_node : GraphData!Node (
 label <- ‘Class: ‘ + c.name,
 Figure <- ‘default_node’,
 width <- c.NMA(),
 height <- c.NMO(),
 color <- c.NME(),
 x <- 0,
 y <- 0

),
 class_edges: distinct GraphData!Edge

foreach (subclass in c.subclasses) (
 label <-c.name+’->’+subclass.name,
 Figure <- ‘default_edge’,
 width <- 0,
 source <- c,
 target <- subclass

)
 }

Figure 8. ATL Transformation: rule Class2Node.

Ingeniare. Revista chilena de ingeniería, vol. 18 Nº 1, 2010

82

and they are visualized with trees, bar diagrams and
directed graphs. The approach followed is totally based
on metamodels and transformations.
Girba [10] proposed a generic metamodel for software
evolution that takes into account the history of a software
artifact as a first order entity. A history is an ordered
set of versions. Both historial and versions are generic
concepts that can be applied to any kind of artifact, like
classes or packages.

CONCLUSION

The study case used in this paper is useful to show that
MDE techniques could be applied in the reverse engineering
and program comprehension domain.

Metamodels promote the use of domain-concepts instead of
programming concepts; consequently, this domain-oriented
engineering promotes the definition of domain-specific
languages (DSL). Additionally, using metamodels facilitates
the domain comprehension and can even be used to share
a common structure between different applications,
increasing the interoperability. To attain this, we require
standards to define and represent metamodels (such as
KM3 and Ecore) and languages to define transformations
between metamodels (like ATL).

As we state in the study case, the process used in this
example can be generalized and used to define a setup
environment for polymetric views, where the configuration
of metrics can be selected from a list (library) and the code
of the ATL transformation can be automatically generated.
Additionally, the steps followed to develop the polymetric
view feature can be applied in a similar way to develop
the functionalities of a software comprehension tool.

ACKNOWLEDGEMENTS

Thanks to the Consejo de Desarrollo Científico y
Humanístico (Universidad Central de Venezuela, Caracas,
Venezuela) for its support to the development of this
research work.

REFERENCES

[1] F. Allilaire, J. Bézivin, M. Didonet, F. Jouault,
D. Touzet et P. Valduriez. “AMMA: vers une plate-
forme générique d’ingénierie des modèles”. Génie
Logiciel. Vol. 73, pp. 8-15. 2005.

[2] G. Antoniol, M. Di Penta, H. Gall and M. Pinzger.
“Towards the Integration of CVS Repositories,
Bug Reporting and Source Code Meta-models”.
Electronics Notes in Theoretical Computer Science,
pp. 87-99. 2005.

-- Number of Methods Added (NMA) metric, for a given class

helper context SourceCode!Class def : NMA() : Integer =

let setOfClassMethodsNames : Set(String) =

self.methods->collect(m | m.name).asSet() in

 let setOfClassInheritedMethods : Set(String) =

 self.allInheritedMethods->collect(m | m.name).asSet() in

 (setOfClassMethodsNames - setOfClassInheritedMethods).size();

-- Number of Methods Overriden (NMO) metric, for a given class

helper context SourceCode!Class def : NMO() : Integer =

let setOfClassMethodsNames : Set(String) =

 self.methods->collect(m | m.name).asSet() in

 let setOfClassInheritedMethods : Set(String) =

 self.allInheritedMethods->collect(m | m.name).asSet() in

 setOfClassMethodsNames.intersection(

 setOfClassInheritedMethods).size();

-- Number of Methods Extended (NME) metric, for a given class

helper context SourceCode!Class def : NME() : Integer =

self.methods->iterate(m ; count : Integer = 0 |

 count + m.invocations->select(inv | inv.name = m.name and

 m.class.allSuperclasses->includes(inv.class))->size()

);

Figure 9. Helpers to compute metrics.

Scalise, Favre and Zambrano: Model-driven reverse engineering and program comprehension: an example

83

[3] J. Bézivin, H. Brunelière, F. Jouault and I.
Kurtev. “Model Engineering Supoort for Tool
Interoperability”. 4th Workshop in Software Model
Engineering, WiSME 2005 (Satellite event of
MoDELs 2005). Montego Bay, Jamaica. October,
2005.

[4] R.I. Bull, M.-A. Storey, J.-M. Favre and M.
Litou. “An Architecture to Support Model Driven
Software Visualization”. International Conference
on Program Comprehension, ICPC 2006. IEEE.
Athens. June 14-16, 2006.

[5] E.J. Chikofsky and J.H. Cross. “Reverse Engineering
and Design Recovery: A Taxonomy”. IEEE
Software. Vol. 7 Nº 1, pp. 13-17. IEEE Computer
Society. January 1990.

[6] S. Ducasse, M. Lanza and S. Tichelaar. “Moose:
an Extensible Language-Independent Environment
for Reengineering Object-Oriented Systems”. In
Proceedings of the Second International Symposium
on Constructing Software Engineering Tools
(CoSET 2000). June 2000.

[7] S. Demeyer, S. Tichelaar and P. Steyaert. “Famix
2.0”. Date of visit: January 2009. URL: http://scg.
unibe.ch/archive/famoos/FAMIX/Famix20/Html/
famix20.html

[8] Moose Technology: FAMIX. Software Composition
Group. Date of visit: January 2009. URL: http://
moosetechnology.org/docs/famix

[9] The Eclipse Modeling Framework (EMF) Overview.
Date of visit: January 2009. URL: http://www.
eclipse.org/emf

[10] T. Girba and S. Ducasse. “Modeling History to
Understand Software Evolution”. International
Journal on Software Maintenance and Evolution:
Research and Practice (JSME). Vol. 18, pp. 207-
236. 2006.

[11] R. Holt. “Software Bookshelf: Overview and
Construction”. March 1997.

[12] F. Jouault and J. Bézivin. “KM3: a DSL for Metamodel
Specification”. Proceedings of 8th IFIP International
Conference on Formal Methods for Open Object-
Based Distributed Systems. Bologna, Italy. 2006.

[13] F. Jouault, J. Bézivin, C. Consel, I. Kurtev and
F. Latry. “Building DSLs with AMMA/ATL: a Case
Study on SPL and CPL Telephony Languages”.
Proceedings of the first ECOOP Workshop on
Domain-Specific Program Development (DSPD).
Nantes, France. July 3rd, 2006.

[14] M. Lanza. “CodeCrawler-Lessons Learned in
Building a Software Visualization Tool”. CSMR
2003 Proceedings (7th European Conference on
Software Maintenance and Reengineering). IEEE
Computer Society, pp. 409-418. 2003.

[15] M. Lanza. “CodeCrawler - Polymetric views in
action”. Proceedings of ASE 2004 (19th IEEE
International Conference on Automated Software
Engineering). IEEE CS Press, pp. 394-395. 2004.

[16] M. Lorenz and J. Kidd. “Object-oriented Software
Metrics”. Prentice Hall Object-Oriented Series,
1994.

[17] H. Müller, J. Jahnke, D. Smith, M.-A. Storey,
S. Tilley and K. Wong. “Reverse Engineering: A
Roadmap”. International Conference on Software
Engineering (Proceedings). Limerick, Ireland,
pp. 47-60. ISBN: 1-58113-253-0. 2000.

[18] E. Scalise, J.-M. Favre and N. Zambrano. “Desarrollo
de una Herramienta para la Ingeniería en Reverso
Dirigida por Modelos: Visualización de Artefactos
de Implementación”. XXXIII Conferencia
Latinoamericana de Informática. San José, Costa
Rica. 9-12 de octubre de 2007.

[19] M.A. Storey, C. Best, J. Michaud, D. Rayside,
M. Litoiu and M. Musen. “SHriMP views: an
interactive environment for information visualization
and navigation. Proceedings of CHI 2002”.
Conference Extended Abstracts on Human Factors
in Computer Systems. Minneapolis, Minnesota,
USA, pp. 520-521. April 20-25, 2002.

[20] M.A. Storey, K. Wong and H.A. Müller. “Rigi: a
visualization environment for reverse engineering”.
International Conference on Software Engineering
(ICSE’97), pp. 606-607. May 1997.

[21] S. Tichelaar. “Modeling Object-Oriented Software
for Reverse Engineering and Refactoring”. PhD
thesis. University of Berne. December 2001.

