
Ingeniare. Revista chilena de ingeniería, vol. 18 Nº 1, 2010, pp. 76-83

MODEL-DRIVEN REVERSE ENGINEERING AND PROGRAM COMPREHENSION: 
AN EXAMPLE

INGENIERÍA REVERSA Y COMPRENSIÓN DE PROGRAMAS DIRIGIDA POR 
MODELOS: UN EJEMPLO

Eugenio G. Scalise P.1  Jean-Marie Favre2  Nancy Zambrano1

Recibido 3 de abril de 2009, aceptado 16 de abril de 2010
Received: April 3, 2009  Accepted: April 16, 2010

RESUMEN

En este artículo se presenta un ejemplo que describe cómo la Ingeniería Dirigida por Modelos (IDM) puede ser aplicada 
al desarrollo de herramientas para la ingeniería en reverso y comprensión de programas. Se seleccionó como caso de 
estudio la herramienta CodeCrawler, específicamente la funcionalidad denominada polymetric view, desarrollada mediante 
tecnologías y técnicas de la IDM. Para ello, se emplearon dos metamodelos (entrada y salida) y transformaciones a nivel de 
los metamodelos que permiten generar la información de un polymetric view asociado a un proyecto de software, utilizando 
la información extraída del código fuente. Las tecnologías utilizadas para el desarrollo del ejemplo, las relacionadas con 
el Eclipse Modeling Project, específicamente el lenguaje de transformación ATL y el lenguaje KM3. El enfoque seguido 
para obtener la implementación resultante puede ser utilizado para desarrollar una herramienta de ingeniería en reverso y 
comprensión de software mediante técnicas de la IDM, incorporando el vocabulario del dominio en la implementación.

Palabras clave: Ingeniería dirigida por modelos, ingeniería en reverso, comprensión de programas, modelos, metamodelos, 
transformaciones entre metamodelos, CodeCrawler, ATL, KM3.

ABSTRACT

This paper presents an example of how Model-Driven Engineering (MDE) can be applied to the development of tools 
for reverse engineering and program comprehension. The tool CodeCrawler was selected as an example; in particular, 
the polymetric view feature was computed using MDE techniques. To this end, two metamodels were proposed (source 
and target) and meta-level transformations that were used to deduce the information of a polymetric view associated to 
any software project (source code). The technologies selected to develop the example were those related with the Eclipse 
Modeling Project, specifically the ATL and the KM3 languages. The approach used in this paper to obtain the implementation 
can be used to develop all the features of a MDE-oriented software comprehension tool, obtaining a domain-oriented 
implementation.
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INTRODUCTION

Software evolution is one of the most significant and 
recurrent problems in software engineering. This is a 
consequence of the fast changes over the last decades, at 
technological level and in software development methods 
and techniques; subsequently, techniques that support 
software evolution are a necessity, especially for big 
software (million lines of code).

Today, as technological changes are so fast, some 
technologies become obsolete quickly, even before they 
reach an appropriate maturity level. The Object-Oriented 
(OO) paradigm was considered to be a solution for several 
software evolution and maintenance problems, but the 
empirical evidence is proving that OO is creating new 
evolution problems and must be used with care to ensure 
that the complexity of the maintenance is not greater than 
the complexity of traditional systems.
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In addition, the legacy software concept has changed over 
time. In the production systems of the industrial world, 
where the systems in production are, the legacy term 
has become common. Over recent years, it has become 
normal to use the “legacy” term to qualify Java or C++ 
software, and hence it can be said that the evolution of OO 
software and traditional software (non structured code in 
COBOL or similar) have the same level of importance. 
In the past, legacy software were monolithic systems, 
whereas nowadays almost all software is a combination 
of distributed components, using standard middleware 
technologies and enterprise frameworks, which causes 
problems in the evolution and maintenance process.

In the 80s techniques were proposed for the comprehension 
and evolution of big software products like reengineering, 
reverse engineering and restructuring. Chikofsky and 
Cross [5] declared that reverse engineering is the process 
of analyzing a subject system to identify the system’s 
components and their interrelationships and create 
representations of the system in another form or at a higher 
level of abstraction. Reverse engineering is a process of 
examination, not a process of change or replication. The 
key objective of reverse engineering a software system 
is to increase the comprehensibility of the system, to 
facilitate the maintenance and new developments. Reverse 
engineering is also useful to cope with the complexity of 
a system with the help of alternative views, recover lost 
information, synthesize higher abstractions, facilitate reuse, 
deduce software metrics and detect side effects.

At present there are several tools for software comprehension 
that can be used to apply reengineering, reverse engineering 
and other techniques. These tools can be used to visualize 
artifacts, compute software metrics and work in other 
properties. Examples of these tools are: SHriMP (Simple 
Hierarchical Multi Perspective) [19], Rigi [20], Portable 
BookShelf (PBS) [11], Moose [7], CodeCrawler [14-15]. 
More tools are listed in [17]. 

In this paper we show how the model driven engineering 
(MDE) approach can be used to develop software 
comprehension tools. In particular, we describe how a 
functionality of the CodeCrawler tool can be developed 
using an alternative approach; this approach proposed 
could be applied to any other tool.

This paper is divided in four major parts. The first section 
describes the general aspects of the CodeCrawler tool, 
including the format used to represent the information, 
and the Polymetric View concept, which is used in the 
example (study case) of the paper. The next section 
describes the study case by means of the details of the 
feature to be implemented, the proposed metamodels 
(source and target) and the transformation between them. 
After the study case there is a brief discussion of our 
findings and related work and finally, there is a section 
with the conclusions of the paper.

THE CODE CRAWLER TOOL

CodeCrawler [14-15] is a lightweight software visualization 
tool, the first implementation of which dates back to 1998. 
It has evolved into an information visualization framework 
and has been customized to work in several contexts 
(website reengineering, concept analysis and more) keeping 
a strong focus on software visualization (SV).

CodeCrawler is considered a language independent SV 
tool, because it uses the Moose reengineering environment 
[6] that implements the FAMIX metamodel [21], which 
models software written in C++, Java, Smalltalk, Ada, 
Python, COBOL, and others.

Figure 1 shows the general architecture of CodeCrawler 
where the core acts as a bridge between the visualization 
engine and the metamodel. This architecture which separates 
the three main parts (core, metamodel, visualization 

Figure 1. Architecture of CodeCrawler.
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engine) of a software visualization tool allows for higher 
flexibility and greater extensibility.

The next sub-sections describe two elements of 
CodeCrawler that are use in this paper: the FAMIX 
metamodel as the standard format that represents 
information extracted from source code and the Polymetric 
View concept, which will be used in the study case.

The FAMIX Metamodel 
FAMIX [21] is a metamodel for modeling object-
oriented software. The main goal of FAMIX is to support 
reengineering activities in a language-independent way. 
The aim is not to cover all aspects of all languages, but 
rather to capture the common features that we need for 
reengineering activities, so tools can be easily reused 
for multiple target languages.

FAMIX was proposed as a part of the Moose system [6] 
and afterwards was used in the CodeCrawler system. The 
requirements considered for the design of the FAMIX 
metamodel included support for multiple languages, 
support for the whole reengineering life cycle, extensibility, 
scalability and information exchange. 

Figure 2. FAMIX core (adapted from [14]).

The FAMIX metamodel defines a set of classes associated 
to the source code entities available in a software project: 
packages, classes, methods, attributes, variables, formal 
parameters, calls, access, etc. Figure 2 shows the core main 
classes of the FAMIX metamodel and their relationships. 
The complete metamodel is available in [14] and a draft 
of the version 2.1 is available in [8].

Polymetric View
A polymetric view [14] is an approach to the construction 
of lightweight visualizations enriched with software 
metrics. A polymetric view is a two-dimensional 
visualization that uses nodes (rectangles) to display 
software entities or abstractions of them and uses edges 

to represent relationships between the entities. This is 
a widely used practice in information visualization and 
software visualization tools. This basic visualization 
technique is enriched by rendering up to 5 metric 
measurements on a single node simultaneously:

– Node Size: The width and the height of a node can 
each render one metric measurement. The larger 
these measurements are, the larger the node is in 
one or both of the dimensions.

– Node Color: The color interval between white 
and black can be used to render another metric 
measurement. The convention is that the higher the 
metric value is, the darker the node is. Thus light 
gray represents a smaller metric measurement than 
dark gray.

– Node Position: The X and Y coordinates of the 
position of the node can also reflect two metrics 
measurements. Not all layouts can exploit position 
metrics, as some of them implicitly dictate the 
position of the nodes (for example, a tree layout).

An actual polymetric view depends on three ingredients: 
a layout (the choice of the displayed entities and their 
relationships), a set of metrics (up to 5 metrics for each 
node), and a set of entities (parts of the system that will 
be visualized).

A MDE APPROACH TO POLYMETRIC VIEWS

In the previous section we described the Polymetric View 
(PV) concept that is used to display graphs where each 
node is related to an source-code entity (class, method, 
variable, package, etc.) and can have up to five associated 
metrics (position x-y, width, height and color).

We selected the Inheritance Classification, a PV that 
shows a tree layout of nodes enriched with metrics 
information. In this PV the nodes are classes, while the 
edges represent the inheritance relationships between 
them. The size of the nodes reflects the number of 
methods added –NMA– (width) and the number of 
methods overridden –NMO– (height) of the classes, 
while the color tone represents the number of methods 
extended –NME– of the class. In this PV the position of 
the nodes does not reflect metric measurements, as the 
nodes’ position is implicitly given by the tree layout.

The study case presented in this paper aims to show how 
we can use MDE techniques to develop a functionality of 
a well known tool in the program comprehension domain. 
We chose to compute the information of a PV starting 



Scalise, Favre and Zambrano: Model-driven reverse engineering and program comprehension: an example

79

from a standard representation of a software system (in 
FAMIX, or a similar format) using a different approach 
than the traditional process used in the common tools 
available. In CodeCrawler the information of a PV is 
stored in a graph, which is the input of a visualization 
engine (see Figure 1). 

The traditional approach used to develop this kind of 
tool is usually ad-hoc and a mixture of control code 
and domain logic; on the other hand, the approach 
proposed in this paper promotes a programming style 
that takes advantage of the domain concepts (in this case, 
source-code entities, graph elements or PV information, 
described in the metamodels) and the control is the 
responsibility of the transformation language engine 
and the host language used to implement the GUI. In 
this programming style, the models became more active 
in software development, unlike traditional software 
development where the models are used as documentation 
artifacts or implementation guidelines.

In order to reach the main objective, first, we must define 
the source and target metamodels, which can be used in a 
program written in a model-transformation language, to 
produce a model that conforms to the target metamodel 
(graph) starting from a model that conforms to the source 
metamodel (source code, FAMIX).

The next sub-sections describe the source metamodel 
(source code), the target metamodel (graph with metrics 
info) and the transformation that computes the PV 
information starting from the source code model.

Source Metamodel: Source Code
In order to apply MDE techniques, in this example we 
need a metamodel to define the structure of the information 
extracted from source code. For this example, a simplified 
metamodel of Java programs is proposed. This metamodel 
includes the information of the classes and their methods. 
Figure 3 shows the metamodel expressed in UML and it 
includes the main entities (Package, Class and Method) 
and the relationships between them. For the sake of 

simplicity we have selected just the relationships needed 
to compute the metrics of the chosen PV. We chose this 
simple metamodel instead of FAMIX, because FAMIX 
could be too big for the example. 

The metamodel expressed in UML notation is useful to 
understand the entities modeled and their relationships; 
nevertheless, a representation in a language more suitable 
to be processed by a program is required. In order to 
do this, we propose an alternative representation in the 
KM3 language. 

KM3 [12] is a textual language to specify metamodels, 
and it can be used to derive metamodels represented in 
the standard Ecore [9]. KM3 is available as a part of the 
Atlas Model Management Architecture (AMMA) project 
[13] developed as a part of the Eclipse Modeling Project, 
which also includes Atlas Transformation Language 
(ATL) [1]. The aim of ATL is to provide a language 
and an environment to define transformations between 
metamodels.

Figure 4 shows the source code metamodel of Figure 3, 
expressed in KM3.

Target Metamodel: Graph
The visualization engine of CodeCrawler requires a 
graph that contains all the information to be displayed. 
Additionally it requires a layout that is deduced from the 
kind of PV to be used. The visualization graph contains 
the information about all the nodes and edges, which 
are associated with source-code entities in the definition 
of the PV. The graph metamodel used in this example is 
presented in Figure 5 (UML) and Figure 6 (KM3).

In this example, each node is associated with a source-code 
class and the edges represent inheritance relationships. 
The graph elements also contain the attributes of the PV. 
Inheritance Classification just needs the width, height and 
color of each node, the values of which are respectively 
the metrics NMA, NMO and NME.

Figure 3. Source code metamodel (UML).
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package SourceCode {
  class Package {
    attribute name : String ;
    reference classes[1-*] container : 
               Class oppositeOf “package” ;
  }
  class Class {
    attribute name : String ;
    reference “package” : 
               Package oppositeOf classes ;

reference superclass[0-1] : 
               Class oppositeOf subclasses ;

reference subclasses[*] : 
               Class oppositeOf superclass ;

reference methods[*] container : 
               Method oppositeOf “class” ; 

reference allSuperclasses[*] : Class ;
reference allInheritedMethods[*] : Method ;

  }
  class Method {

attribute name : String ;
reference “class” : 

               Class oppositeOf methods ;
reference invocations[*] : Method ;

  }
}
package PrimitiveTypes {
datatype String;
}

Figure 4. Source Code Metamodel (KM3).

Figure 5. Graph metamodel (UML).

The definitions of each metric used are the following:

– Number of Methods Added by a subclass (NMA): A 
method is defined as an added method in a subclass 
if there is no method of the same name in any of its 
superclasses [16].

– Number of Methods Overridden by a subclass (NMO): 
Number of methods defined in a subclass with the 
same name of a method in one of its superclasses [16].

– Number of Methods Extended (NME): Number of 
methods redefined in subclass by invoking the same 
method on a superclass [14].

package GraphData {
class Graph {

  attribute title : String ;
  reference elements[*] container : 

                       GraphElement ;
}
abstract class GraphElement {

  attribute label[0-1] : String ;
  attribute figure[0-1] : String ; 

}
class Node extends GraphElement {

  attribute width[0-1] : Integer ;
  attribute height[0-1] : Integer ;
  attribute color[0-1] : Integer ;
  attribute x[0-1] : Integer ;
  attribute y[0-1] : Integer ;

}
class Edge extends GraphElement {

  attribute width[0-1] : Integer ;
  reference source : Node ;
  reference target : Node ;

}
}
package PrimitiveTypes {

datatype String;
datatype Integer

Figure 6. Graph Metamodel (KM3).
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The metrics are computed using the attributes and 
relationships of the source-code metamodel. An instance 
of the graph metamodel is derived from the source-code 
metamodel by means of a transformation. The next 
sub-section describes the transformations related to this 
example.

Transformations between the metamodels
In order to generate a graph model with the computed 
metrics of the PV, we need a transformation that takes as 
input the source-code metamodel, the graph metamodel 
and a model conform to the source-code metamodel. This 
transformation must generate a model that conforms to 
the target metamodel (graph).

We chose the Atlas Transformation Language (ATL) [1] 
to write a transformation that checks all the entities of the 
source model (a representation of a program that conforms 
to the source-code metamodel) and produces the entities 
of the target model. Additionally, the transformation uses 
a set of helpers to compute every metric needed for the 
PV of the example (Inheritance Classification).

Figure 7 contains the main transformation called 
Package2Graph and Figure 8 contains the rule 
Class2Node.

The rule Package2Graph (Figure 7) applies to each 
package of the source code (line 2 to 3) and generates 
a graph (line 5 to 11) with the name of the package 
(line 6) and a sequence of elements (lines 7 to 10): nodes 
(line 8) and edges (line 9).

1
2
3
4
5
6
7
8

9

10
11
12

 rule Package2Graph {
 from 

p: SourceCode!Package
 to 

g: GraphData!Graph ( 
  title <- p.name,
  elements <- Sequence { 
  p.classes->collect

(c|thisModule.resolveTemp(c,’class_node’)),
  p.classes->collect

(c|thisModule.resolveTemp(c,’class_edges’))
  }

   )
 }

Figure 7. ATL Transformation: rule Package2Graph.

The rule Class2Node (Figure 8) applies to every class 
of the source-code model (line 2 to 3) and generates 
one graph node per class (line 5 to 13) and as many 
edges as the number of subclasses of the current class 
(lines 14 to 21). The node attributes width, height and 
color are associated with their respective metrics (lines 
8 to 10).

The metrics are computed by three helpers that are shown 
in Figure 9. The attributes x and y are not computed by 
the transformation because this PV does not use this 
information (the position of each node is deduced from 
the tree layout). Some edge attributes, in particular the 
width, are not needed in this PV. 

To generate another PV, the process to follow is similar 
to that applied in this example. The main differences are 
the values (metrics) used to the attributes of a node. This 
process can be generalized and automated to any PV, using 
an environment to configure PVs, selecting the metrics 
from a list. The metrics could be in a repository. The ATL 
transformation to generate the information about a PV could 
be automatically generated by means of a GUI, a domain 
specific language (DSL) or a high-order transformation.

RELATED WORK

There are different research groups using MDE techniques 
in the software evolution domain. Bézivin and his colleagues 
[3] show how to increase the tool interoperability; in 
particular, a general metamodel for the data of bugtracking 
tools is definied and an example is presented where the 
data of several tools (Bugzilla, Mantis and Excel) is 
translated between them. In [2], Antoniol and his colleagues 
combine data extracted from source code, CVS repositories 
and bugtracking tools using metamodels. In [18] MDE 
techniques were used to visualize bugtracking data.

Bull and his colleagues [4] use MDE techniques to assist 
with the creation of highly customizable interfaces for 
software visualization; in particular, an example is presented 
where some Java source code metrics are computed 
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22

 rule Class2Node {
from

  c : SourceCode!Class
to

  class_node : GraphData!Node (
  label <- ‘Class: ‘ + c.name,
  Figure <- ‘default_node’,
  width <- c.NMA(),
  height <- c.NMO(),
  color <- c.NME(),
  x <- 0,
  y <- 0

),
 class_edges: distinct GraphData!Edge 

foreach (subclass in c.subclasses) (
  label <-c.name+’->’+subclass.name,
  Figure <- ‘default_edge’,
  width <- 0,
  source <- c,
  target <- subclass

)
 }

Figure 8. ATL Transformation: rule Class2Node.
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and they are visualized with trees, bar diagrams and 
directed graphs. The approach followed is totally based 
on metamodels and transformations.
Girba [10] proposed a generic metamodel for software 
evolution that takes into account the history of a software 
artifact as a first order entity. A history is an ordered 
set of versions. Both historial and versions are generic 
concepts that can be applied to any kind of artifact, like 
classes or packages.

CONCLUSION

The study case used in this paper is useful to show that 
MDE techniques could be applied in the reverse engineering 
and program comprehension domain.

Metamodels promote the use of domain-concepts instead of 
programming concepts; consequently, this domain-oriented 
engineering promotes the definition of domain-specific 
languages (DSL). Additionally, using metamodels facilitates 
the domain comprehension and can even be used to share 
a common structure between different applications, 
increasing the interoperability. To attain this, we require 
standards to define and represent metamodels (such as 
KM3 and Ecore) and languages to define transformations 
between metamodels (like ATL).

As we state in the study case, the process used in this 
example can be generalized and used to define a setup 
environment for polymetric views, where the configuration 
of metrics can be selected from a list (library) and the code 
of the ATL transformation can be automatically generated. 
Additionally, the steps followed to develop the polymetric 
view feature can be applied in a similar way to develop 
the functionalities of a software comprehension tool.
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