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RESUMEN

Este trabajo presenta un nuevo algoritmo basado en wavelets para la detección de fallas en máquinas de inducción de tres 
fases. Este nuevo método utiliza la desviación estándar de los coeficientes wavelet, que se obtiene de la descomposición de 
n-niveles de cada fase, para identificar fallas en el voltaje en una fase o fallas en la resistencia del estator en máquinas de 
inducción. El algoritmo propuesto puede funcionar independiente de la frecuencia de operación, tipo de falla y condiciones 
de carga. Los resultados muestran que este algoritmo tiene una mejor respuesta de detección que las técnicas basadas en la 
transformada de Fourier.

Palabras clave: Wavelets, detección de fallas, máquinas de inducción, transformada rápida de Fourier, detección 
temprana.

ABSTRACT

This paper presents a new wavelet-based algorithm for three-phase induction machine fault detection. This new method 
uses the standard deviation of wavelet coefficients, obtained from n-level decomposition of each phase voltage and current, 
to identify single-phasing faults or unbalanced stator resistance faults in induction machines. The proposed algorithm can 
operate independent of the operational frequency, fault type and loading conditions. Results show that this algorithm has 
better detection response than the Fourier transform-based techniques.
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INTRODUCTION

Induction machines are among the most widely used 
devices in industrial processes today. They are generally 
viewed to be robust and well suited for a wide ranging 
applications. This increasing critical role in industrial 
processes underscores the level of attention given to early 
detection or diagnosis of potentially destructive faults, as 
well as the extensive research time devoted to the subject 
over the past decade.

Methods for prediction and detection of motor faults are 
extensively documented in the research literature; many 
of these methods use stator currents and voltage signals in 
some form along with signature algorithms to determine 
or predict fault conditions in an induction motor. A very 

organized summary of developments in motor signature 
analysis tools and techniques over the last two decades is 
presented by Benbouzid in [1]. Classical signature analysis 
techniques primarily use Fourier transform methods to 
examine current waveforms in details and then establish 
some criteria for classifying a range of rotor and stator 
faults. The trend in signature analysis is moving towards 
application of non-traditional computational techniques 
in the subject areas such as finite elements and more 
recently wavelet signal processing [1]-[4]. To contrast both 
approaches, induction motor fault diagnosis using Fourier 
techniques requires vast amount of data as established in 
[5]. Whereas, in [2] a Gaussian-enveloped wavelet was 
developed that searches for particular frequencies related to 
known faults, therefore improving fault-detection over the 
traditional Fourier method. However, note that machine’s 
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characteristic frequencies have to be known in advance 
and therefore bandpass filters with constant fractional 
bandwidth have to be designed for that particular machine. 
In [3], mechanical and electrical faults were detected by 
transients in the armature current and the fault detection 
algorithm was designed for brush d.c. windshield and 
fuel pump motors.

This paper presents a novel induction motor fault detection 
system that does not require a large amount of data such 
as in the Fourier analysis techniques. The method uses 
wavelet analysis to classify winding related motor problems 
such as open winding and winding resistance. Specifically 
standard deviation of wavelets coefficients were used for 
this purpose. After extensive simulations, it was determined 
that the reverse biorthogonal wavelet is the best one to 
extract features for our fault-detection algorithm. Note that 
in this algorithm, machine’s characteristic frequencies do 
not have to be known in advance as in [2]. This algorithm 
also uses voltage and current information; unlike in [3] 
that use only armature current. In addition, in [3], the 
performance of the reverse biorthogonal wavelet was 
not investigated. Furthermore, the reduction of memory 
requirements allow the implementation of this system 
with lower cost hardware and permit the algorithm to be 
run in near real-time.

OVERVIEW OF THE WAVELET  
TRANSFORM TECHNIQUE

Fourier analysis techniques provide significant information 
on frequency components of signals under study, but offer 
no information regarding where a particular frequency 
was located in the time axis. In contrast, wavelet 
transforms offers time-frequency information of signals 
under study, thereby making wavelet transform methods 
more comprehensive than Fourier transforms in signal 
analysis.

Wavelet coefficients, at a first level of decomposition, 
are obtained from a signal under analysis by applying a 
mother wavelet. The process can be repeated if the mother 
wavelet is scaled and translated. The mother wavelet 
function (denoted by ψ ( )t ) and its scaling function (given 
as ϕ( )t ) describe a family of functions which are required 
to satisfy a number of criteria [7,8]. It must have a zero 
mean denoted as in (1).

	
ψ ( )t dt =

−∞

+∞
∫ 0

	
(1)

In addition ψ ( )t  must have a square norm of one as 
denoted in (2).

	 ψ ( )t dt
2

1=
−∞

+∞
∫ 	 (2)

These requirements are ensured by having a mother 
wavelet that is absolutely and square integrable. The 
mother wavelet forms a family of wavelets when the 
function is scaled and translated in the time domain. 
When a mother wavelet is translated by a factor of a and 
scaled by a factor of b, it can be expressed in a generic 
form as follows [7]:

	 ψ ψa b t
a

t b

a, ( ) = −





1
	 (3)

The use of these wavelet functions provides a robust 
method of analyzing non-stationary signals to provide 
both frequency and time information. In practice, wavelet 
coefficients are obtained by a filter bank approach, with a 
low-pass filter and its complementary high-pass filter.

APPLICATION OF WAVELETS IN INDUCTION 
MACHINE FAULT DIAGNOSIS

The use of wavelets for induction machine fault detection 
is documented in various journals. They have been shown 
to yield satisfactory results for detecting electrical and 
mechanical faults [3]. Wavelet decomposition results in 
useful data contained in ‘details’ and ‘approximate’ parts 
as shown in the simplified block diagram of Figure 1. The 
‘approximation’ signal can be further decomposed into 
a new set of ‘approximation’ and ‘details’ signals and 
continue until n decomposition levels are obtained.

Input
signal

‘approximation’ 

‘details’

Low-pass
Filter 

High-pass
Filter 

Figure 1.	 First level decomposition.

The ‘details’ signal contains high frequency information 
whereas the approximate part contains signal data 
with the low frequency components. Computing this 
decomposition to n levels results in those higher detail parts 
being removed, thereby reducing the overall frequency 
characteristics of the resulting data. This implies that lower 
levels of decomposition provide detail data that contains 
the highest frequency components. For the induction 
machine signature analysis, the higher frequency wavelet 
components represent system noise or harmonics due to 
the input power inverter. Therefore decomposition levels 
higher than one are of interest in the technique presented 
in this paper.
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Fault patterns are obtained from the information yielded 
by the n-level wavelet decomposition through a variety 
of strategies, including filter banks and classification 
algorithms [8]. In this study a statistical analysis of the 
wavelet ‘details’ coefficients is used as the basis for fault 
detection. From the mean or standard deviation of the 
wavelet coefficients it could be inferred that the average 
magnitude of frequency components are present in the 
signal under analysis.

Each level of the signal detail coefficients provides 
frequency resolution that allows unique signature 
characteristics to be deduced. That is if the n-level detail 
coefficients are analyzed then each level represents the 
spatial information for a small range of frequencies. 
This allows the analysis of the frequency differences 
and their time location in the signal under analysis. 
In this paper, the standard deviation of the wavelets 
coefficients is used to identify frequency anomalies in 
a given time range in the input data set. The detection 
algorithm is discussed in details in the next section 
of this paper.

PROPOSED ALGORITHM  
FOR FAULT DETECTION

The algorithm presented in this paper uses the standard 
deviation of wavelet coefficients to detect single-phasing 
of supply (loose connection) and unbalanced stator 
resistance faults in three-phase machines. These types 
of faults tend to lead to a greater concentration of low 
and midrange frequency anomalies. An attempt to detect 
these faults with frequency domain techniques alone 
discards the cyclic nature of reoccurring patterns with each 
period. The analytical method proposed is independent 
of motor operating frequency. The basic values used for 
the decision process are referred to in this paper as the 
Standard Deviation of Wavelet Coefficients (SDWC). 
These values are calculated per phase by performing 
an n-level wavelet decomposition, then the standard 
deviation of these coefficients is obtained.

To detect the fault type, the maximum and minimum 
SDWC values are compared between the three phases. 
The ratio of these values is then used to detect the fault 
type. The ratio of the SDWC between phase 1 (minimum) 
and phase 2 (maximum) is given by b1

2 0 1∈ , . For 
example, if a sample set in phase A contains the greatest 
SDWC and phase B contains the lowest SDWC at half of 
the value of phase A, then this would produce a SDWC 
ratio of bB

A = 0 5. . This value is used to test each data 
set to determine the presence of a winding fault. In the 

test cases presented in this paper, the optimal threshold 
values to determine the proper ratio for different faults 
were determined through experimentation. These ratio 
values will be denoted as bHigh, bMid, and bLow for the three 
signature types detected. That is, bHigh is the SDWC range 
for a decision of no fault, bMid is the range for a winding 
resistance fault, and bLow is the range for open winding 
diagnosis. The decision process is shown functionally in 
the flow chart of Figure 2.

Calculate SDWC 
on each phase 

Find min and max SDWC 
according to phases

Calculate SDWC ratio β

β in range 
βHigh?

β in range 
βMid?

β in range 
βLow?

No Fault

Finite winding 
resistance fault

Open winding 
fault

YES

YES

YES

NO

NO

NO

Error

Perform n-level wavelet 
decomposition

Figure 2.	 Flow chart of the algorithm.

This algorithm requires no learning and detects faults based 
on the differences between phases alone. The proposed 
diagnostic technique is tested using 63 different line-voltage 
and current measurements obtained from a set of identical 
3-horsepower three-phase induction motors subjected to 
various types of faults. The Reverse Biorthogonal (rbio6) 
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wavelet available in MATLAB® was used for testing the 
proposed algorithm.

EXPERIMENTAL RESULTS AND FAULT 
DETECTION

Data samples were gathered from input line voltages and 
currents of four different 3-horse-power induction motors 
fed through a three-phase inverter. The inverter offered 
the flexibility of adjusting machine supply frequency 
to 30, 60 and 80 Hz to facilitate testing of the detection 
algorithm under varying machine supply frequencies. 
The electrical fault studies included unbalanced supply 

voltage, single-phasing of supply and unbalanced stator 
resistance. Measurements where recorded using a digital 
storage oscilloscope.

The faults were created by disconnecting the winding 
entirely or inserting a 15 Ohm resistance on the phase. 
These faults were all produced on the induction machine 
phase B. A graphical user interface (GUI) was created in 
MATLAB® to offer a convenient environment for users to 
run the detection algorithm and determine the fault type 
from test files generated following fault simulation. The 
GUI is shown in Figure 3.

Figure 3.	 GUI interface for the fault detection algorithm.

The criteria used for fault detection was empirically 
determined using the input data set. The value used for 
n, the wavelet decomposition level, was ten, a value that 
will greatly magnify the frequency differences. This is 

considered a good choice because frequency differences 
for relatively low frequency systems such as the machines 
under study exist in lower bands. Decomposition coefficients 
at the lower levels simply compare electrical noise. The 
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ranges used for β Low , β Mid , and β High  where chosen 
to be [0 - 0.1], [0.1 - 0.4], and [0.4 - 1] respectively. 
Sixty-three cases (each case was stored in an excel file) 
with 10,000 data points each were used for testing this 
detection algorithm. The data was obtained at Penn State 
Harrisburg’s Energy Conversion Laboratory. The data 
was wavelet-decomposed and the standard deviation of 
the wavelet coefficients for each phase obtained. The 
wavelet coefficients for each phase is summarized and 
shown graphically in Figure 4.

Figure 4.	 Normalized Standard deviation of Wavelet 
coefficients for all 63 data samples.

Figure 4 shows the values of the normalized standard 
deviation of the wavelet coefficients for each phase. At 
first observation, the data seems arbitrary. Since the data 
set contains many sets with faults, therefore it is expected 
a trend could be seen in phase B. This however shows 
very little information about the type of fault. The data 
was then run through the algorithm to detect the fault 
conditions. The faults were detected correctly for every 
case. The algorithm was set up to routinely sort the different 
samples based on fault type. This allowed for new plots 
to be constructed showing the similarities between data 
sets processing similar faults. Figures 5, 6 and 7 shows 
the cases with no fault, winding resistance fault and open 
winding faults respectively. The “Data Sample Set” axis 
of these figures show how many files were used in each 
case. For instance, Figure 5 displays that 32 files were used 
for the proposed algorithm, containing a total of 32,000 
data points. Figures 6 and 7 display similar attributes. 
These plots clearly show the trends of the input data and 
provide enough feature information of the type of fault 
to be detected.

Figure 5.	 Wavelet coefficients showing no winding fault 
(32 files out of 63).

Figure 6.	 Wavelet coefficients showing winding resistance 
fault (24 files out of 63).

The data could also be presented looking at the criteria 
originally used to determine the fault type, which is the 
ratio of the minimum to the maximum standard deviation 
of the wavelet coefficients. Figure 8 shows the data samples 
as they were analyzed where the no fault and the two 
fault conditions clearly demonstrate distinct behavior. 
The blue bars show the no fault condition, the green bars 
illustrate winding resistance faults and the smaller red 
(difficult to see at, the bottom of Figure 8) bars depict 
the open winding resistance fault. Notice that the fault 
conditions yield a large difference in coefficients, and 
therefore smaller ratios (shorter bars). Again this data 
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clearly shows that a correct detection can be obtained by 
using this algorithm.

Figure 7.	 Wavelet coefficients showing open winding 
fault (7 files out of 63).

Figure 8.	 Relative ratio between phases of standard 
deviation of wavelet coefficients.

COMPARISON WITH FOURIER  
TRANSFORM TECHNIQUES

The field of induction machine fault detection has been 
generally based on the use of the Fast Fourier Transform 
(FFT). This technique is well established and greatly 
researched in the literature, see [9] for an overview. 
The algorithm proposed here has key advantages over 
classic FFT solutions. The use of FFT-based motor fault 
detection requires that frequency resolution be very good, 
generally less than 1 Hz. To achieve this resolution the 

data set used must be very large and therefore requires a 
large amount of memory for processing. The algorithm 
presented here performs without that requirement, in fact 
attempting an FFT-based fault detection algorithm on the 
same data set used in the wavelet-based algorithm, yields 
inconclusive results. This is illustrated in Figure 9 where 
the data presented previously (with a known fault) has 
very poor frequency resolution around.

Figure 9.	 FFT of motor current with known fault 
condition.

The results obtained in section 5 and in this section, 
and the amount of data analyzed, provide validity of the 
proposed algorithm. In particular, Figures 5, 6,7, and 8 
clearly show the distinctive features of the normalized 
standard deviation that were used as signal signature 
for this method. Note, once again that the decision 
algorithm is frequency-independent. We highlight that the 
fault detection software not only has been successfully 
implemented but also used in a teaching environment for 
introducing wavelet applications in signature analysis in 
an undergraduate energy conversion course [11].

CONCLUSIONS

Wavelet decomposition is a superior method of signal 
analysis in time varying situations due to spatial data 
retention. Analysis using wavelets produces both frequency 
and spatial information providing a robust solution for 
motor fault detection. Induction machines account for the 
majority of industrial equipment in use today and proper 
operation is of utmost importance.

The fault detection algorithm discussed in this paper could 
identify a fault present in motor that is still operational, 
therefore can provide preventive maintenance schedule. 
Faults such as those discussed in this paper should be 
detected before they cause the machine to completely 
fail and avoid total system degradation. Detecting these 
faults in a timely manner is vital to maintaining a properly 
functional system. The proposed method offers a reliable 
solution for detecting the fault types of interest. This 
algorithm was tested on over sixty data samples, on 
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four different induction machines and detected faults 
with 100% reliability. This algorithm is independent of 
operational frequency, fault type, and loading. In addition, 
the algorithm also requires no training and provides a more 
robust solution compared to systems simply comparing 
characteristics to known healthy values. That allows this 
system to work for many different motors and account for 
normal motor wear that may cause false positive detection 
in some algorithms since only the differences between 
windings is used as a detection criteria.
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