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RESUMEN

Se analiza un método para la reducción del ancho de banda de matrices dispersas, el cual consiste en fraccionar ecuaciones, 
substituir e introducir nuevas variables, similar a la descomposición en subestructuras utilizada en el método de los elementos 
finitos (FEM). Es especialmente útil si el ancho de banda no puede ser reducido intercambiando estratégicamente columnas 
y líneas. En estos casos, dividir ecuaciones y reordenar líneas y columnas puede reducir el ancho de banda, al costo de 
introducir nuevas variables. En comparación con el método de las subestructuras en el FEM, en el cual la descomposición 
está hecha antes de obtener la matriz del sistema, la metodología que se presenta está aplicada después de obtener el sistema 
lineal, independiente de su origen. El método está aplicado con éxito en una matriz dispersa en el contexto del FEM, lo 
cual resulta en un aumento de eficiencia del algoritmo directo para resolver el sistema lineal.

Palabras clave: Matriz dispersa, ancho de banda, elemento de volumen representativo, homogenización, condiciones de 
borde cinemáticamente mínimas.

ABSTRACT 

A sparse matrix bandwidth reduction method is analyzed. It consists of equation splitting, substitution and introducing 
new variables, similar to the substructure decomposition in the finite element method (FEM). It is especially useful when 
the bandwidth cannot be reduced by strategically interchanging columns and rows. In such cases, equation splitting and 
successive reordering can further reduce the bandwidth, at cost of introducing new variables. While the substructure 
decomposition is carried out before the system matrix is built, the given approach is applied afterwards, independently on 
the origin of the linear system. It is successfully applied to a sparse matrix, the bandwidth of which cannot be reduced by 
reordering. For the exemplary FEM simulation, an increase of performance of the direct solver is obtaine.

Keywords: Sparse matrix, bandwidth, representative volume element (RVE), homogenization, kinematic minimal boundary 
conditions.
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INTRODUCTION

A linear system, conveniently denoted in a matrix-vector 
notation
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is invariant under the simultaneous interchange of xi 
and xj and the columns i and j of the matrix, and the 

simultaneous interchange of yi and ij and the rows i and 
j of the matrix. Depending on the solution algorithm that 
should be applied, different matrix characteristics may be 
advantageous. If, for example, Gaussian elimination is 
used, the creation of non-zero entries (fill in) during the 
process can be reduced either by reordering the system 
such that the non-zero entries concentrate on the main 
diagonal and columns that range upwards from it, or by 
concentrating the non-zero entries in a band around the 
main diagonal. The latter case corresponds to a reduction 
of the bandwidth of the matrix. The bandwidth of a matrix 
is related to the maximum distance of non-zero matrix 
entries from the main diagonal. One distinguishes the left 
and the right half bandwidth,
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k i j i j Aij1 0= − > ≠max( ), , (2)

k j i j i Aij2 0= − > ≠max( ), , (3)

which coincide for symmetric matrices. The bandwidth b 
is given by b=k1+k2. Especially direct solution algorithms 
can take advantage of a band structure, which is moreover 
helpful in reducing the memory requirements. For direct 
solvers, tcpu ≈ cb2 holds. Consequently, one is interested in 
reordering the linear system such that the system matrix 
bandwidth is reduced. 

The efficient reordering of linear systems is an important 
topic discussed in the literature since sparse linear systems 
emerged routinely in engineering applications, i.e. since the 
development of the finite difference and the finite element 
method and the availability of computers. The reordering 
such that b is minimized is a combinatorial problem. 
Different algorithms that base on a graph representation 
of the non-zero connections of columns and rows have 
been proposed. The most common methods are the Cuthill-
McKee and the Reverse Cuthill-McKee algorithm [6-5], 
Sloans ordering [14], Gibbs-Poole-Stockmeyer ordering 
[10], minimum degree ordering and nested dissection, 
which is also referred to as nested substructure method 
in the context of the FEM [7]. A survey is given by [2]. 
However, there are cases in which the bandwidth cannot 
be reduced by reordering. If the linear system consists 
mostly of equations with a small number of terms but 
at least one equation has a considerably larger number 
of terms, the matrix contains dominant non-zero rows, 
while the matrix contains dominant non-zero columns 
if at least one variable appears much more often in the 
equations than the other variables. Such linear systems 
are not encountered very often, but they can arise, e.g., 
if a large number of nodes of a finite element mesh is 
constrained by few equations. Here, an approach which 
permits a further reduction of the bandwidth at the cost 
of the overall system size is presented, and tested in 
conjunction with the FE system ABAQUS.

BANDWIDTH REDUCTION BY INTRODUCING 
NEW DEGREES OF FREEDOM

Row-Dominant matrices
Consider the linear system
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i.e. a matrix with the first row and the diagonal entirely 
filled with non-zero entries, while all other matrix 
elements are equal to zero. The bandwidth of the matrix 
is equal to n, and one can see that the interchanging of 
columns and rows can reduce the bandwidth maximally 
to approximately n/2, by putting the dominant row in a 
more central position. Let us introduce the substitution

x A x A xm m n n
* = +…++ +1 1 1 1 (5)

and treat x* as unknown. Hence, we add the latter equation 
to the list of equations and rewrite the system as 
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The matrix bandwidth can now be reduced by interchanging 
row and columns to approximately n/4. The new system 
has one more degree of freedom, but its minimal bandwidth 
is halved. The procedure can be applied to the remaining 
dominant rows to reduce the bandwidth to a certain value, 
or one can directly split the first equation into p equations, 
reducing the bandwidth to approximately n/(2p).
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Column-Dominant matrices
A similar strategy can be employed for column-dominant 
linear systems. Consider the linear system 
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The first column can be split up by introducing x*
1=x1, 

and distributing the coefficients that are connected to x1 
equally on x1 and x1

*. Adding the equation and the new 
variable to the system, one obtains
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Again, the bandwidth of the latter system can be reduced 
by column and row permutation.

PRESERVATION OF SYMMETRY

The latter substitutions can be carried out such that 
the symmetry is preserved, which is demonstrated on 
a symbolically filled matrix. The vector reordering is 
disregarded for convenience. Being given a matrix of 
the form 
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we firstly split the dominant column and append the newly 
formed column and row, 
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and then split the dominant row and append the newly 
formed column and row,
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followed by interchanging the newly added columns or 
rows (rows here)
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For large systems, the increase in variables may have no 
practical effect at all, converse to the bandwidth reduction. 
For the preceding examples, the equation splitting is 
more costly than applying Gaussian elimination, after 
reordering the matrices such that the fill in is avoided. 
However, in some cases, the splitting of dominant rows 
and columns can significantly reduce the solution effort. 
In the following section an example for the profitable 
application of the equation splitting is given.
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EXAMPLE

The finite element method is used to approximate the 
solution of a partial differential (PDE) equation by 
discretizing the domain by finite elements, which are 
connected at nodes. The solution is approximated by 
piecewise steady functions inside the elements, the 
parameters of which are determined by exploiting the weak 
form of the PDE (see, e.g., [1]). The smallest possible 
bandwidth of the symmetric system matrix depends 
on the number of elements to which the node with the 
most connections is connected. The actual bandwidth 
depends on the specific structure of the finite element 
mesh. Reordering the nodes corresponds to column and 
row interchanging. There are geometries for which even 
an optimized mesh structure has a large bandwidth. But 
even in such cases the bandwidth is usually considerably 
smaller than the system size. However, the FEM permits 
a connection of nodes not only by the elements, but by 
other constraint equations.

Note that in the context of the FEM, the algorithm 
demonstrated here is similar to the decomposition of the 
FE model into hyper- and substructures. Referring to the 
substitution (3), one would say that the nodes belonging 
to the xi that are summarized to x* form a substructure. 
The procedure discussed here does not operate on nodes 
but on degrees of freedom. The most important difference 
is that the method presented here is independent on the 
problem, i.e. it can be applied algorithmically to any linear 
system, while the substructure decomposition is part of the 
specific FE modelling. In the substructure decomposition, 
the structure is divided into independent substructures, 
while the substitution (3) must not be a reasonable division 
into independent parts from the engineering point of view. 
We encountered the problem when we prescribed the 
average displacement u on an entire face of a structure 
in a continuum mechanics problem, which results in a 
large constraint equation

u u u nun1 2+ +…+ = (13)

In our case, the constraints emerge in a homogenization 
procedure. Homogenization bridges the gap from one 
scale to a larger scale. If one knows the constituents of 
a microstructure and their material properties, one can 
approximate the behaviour on a larger scale by averaging 
over the volume on the lower scale (see, e.g., [4] and the 
references within). Here, we present a numerical example. 
We want to apply an average deformation gradient

F
V

F X dV= ( )∫
1

Ω
(14)

to a cubic representative volume element (RVE). Ω 
denotes the domain occupied by the body in the reference 
placement. F and H are called the deformation and the 
displacement gradient, respectively, x and X are the 
position vectors of material points in the reference and the 
current placement, and u=x-X denotes the displacement 
vector. For an account to continuum mechanics see for 
example [12, 3].

F x X X u X I HX X= ( ) ⊗∇ = + ( )( ) ⊗∇ = + (15)

F is commonly enforced by homogeneous or periodic 
boundary conditions. These have the drawback that they 
stiffen the RVE artificially, as, e.g., shear bands cannot 
arrange freely. Here we focus on applying F without 
further constraints, which is referred to as the kinematic 
minimal boundary conditions [13], natural boundary 
conditions [8] or weakly enforced kinematic boundary 
conditions [9]. By Gauss theorem we convert the volume 
integral into a surface integral,

F
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I u X dVX= + ( )( ) ∇∫
1

Ω

⊗ (16)

I H
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In the FE implementation, the latter integral converts into 
a sum over the weighted displacements of the surface 
nodes, the weight of which depends on the fraction of the 
surface that is assigned to each node. E.g., for hexahedral 
elements, which result in quadrilateral surfaces, a fourth of 
the surface of each element to which the node is connected 
is added. The FE system ABAQUS has been used for the 
following example. The FE model consists of a regular 
meshed cube (20 elements per edge), linear eight node 
bricks (element type C3D8) are used. The corner node 
at (0,0,0) is tied, which is the only direct displacement 
boundary condition. The deformation is enforced by 
prescribing the H as described above. For this purpose, 
3 artificial nodes have been created, the 3 degrees of 
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freedom of which represent the components of H . In any 
case, 9 large constrained equations have to be taken into 
account. It remains open whether the artificial nodes are 
constrained by a displacement (average straining) or by 
a force (average stress). For the comparison between not 
splitting and splitting of the equations and for checking of 
the implementation, a homogeneous linear elastic isotropic 
material behaviour is assumed (St. Venant-Kirchhoff). For 
illustration purposes of the boundary conditions, a central 
hard spherical inclusion of diameter 0.4*edge length and 
Gsphere = 5Gmatrix = Gsphere = 5Gmatrix = 10.000MPa (shear 
and compression modulus, respectively) is included by 
the Gauss-point method (multiphase elements, see [11]). 
With this RVE, a uniaxial tension and a shear test have 
been carried out. For the uniaxial tension, H11 = 0.1 and 
H12 = H13 = H23 = H21 = H31 = H32 = 0 have been prescribed, 
i.e. seven large constraining equations are included. The 
components H22 and H33  are not constrained in order to 
permit an average lateral straining. For the shear test,  H22 
and H13 = H23 = H21 = H31 = H32 = 0 haven been prescribed, 
while the average normal straining can freely adjust, i.e. 
H11, H22 and H33 are not prescribed.

Table 1 gives an overview on the difference between the 
FE simulations if carried out with and without equation 
splitting. Both simulation give exactly the same results 
and convergence behaviour, since the modifications of 
the linear system presented here do not affect the results. 
However, one can see in Table 1 that the equation splitting 
results in a considerable reduction of linear system solver 
effort. In Figure 1, the deformed RVE with the spherical 
inclusion is depicted. For a review of the FE simulations, 
supplementary files are provided at http://www.ovgu.
de/ifme/l-festigkeit/ Rev_chilena_de_eng_supplement_
gluege_2010.zip, including the ABAQUS input files, the 
user material subroutine, the iteration log files and the 
output databases.

Figure 1.	 Cross sections of two deformed RVE with a 
central spherical inclusion. For the tension test 
(top), the displacement is scaled uniformly by a 
factor of 10 in order to amplify the deformation. 
The greyscaling (12 bands) corresponds to 
the equivalent Mises stress, from 400MPa 
(white) to 1.200MPa (black). For the shear test 
(bottom), the displacement is scaled by a factor 
of 2 in the shear direction (d) and the shear 
plane normal (n), and by a factor of 20 in the 
direction normal to d and n. The greyscaling 
(12 bands) corresponds to the equivalent Mises 
stress, from 1.000MPa (white) to 2.400MPa 
(black). One can see the non-periodicity of 
the deformation.

Table 1.	 Long constraining equations vs. equation 
splitting with a direct solver in ABAQUS.

Splitting No splitting

Max. Terms in eq 20 2*21²+1=883

Deg. Of freedom 28215 3*21³+9=27.792

Floating point ops per 
iteration

4.61 E10 4.34 E11

Min. Memory usage 256 MB 853.71 MB

FE sim wallclock 
time

141 1.621
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CONCLUSIONS

The present work points out problems that may emerge 
when row- and column-dominant linear systems are 
treated by direct solution methods. An efficient treatment 
is exemplified on a continuum mechanics problem, namely 
a numerical homogenization by the representative volume 
element technique, where kinematic minimal boundary 
conditions have been employed. Further research may 
focus on how the modifications affect the properties of 
the linear system. Moreover, it should not be concealed 
that the kinematic minimal boundary conditions are not 
as commonly employed as the periodic displacement and 
the homogeneous displacement boundary conditions, 
and have received therefore less attention. In particular, 
the question under which circumstances the kinematic 
minimal boundary conditions satisfy the Hill condition 
[15] is not answered conclusively.
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