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Resumen

Los diagnósticos médicos son una fuente valiosa de información para evaluar el funcionamiento de 
un sistema de salud. Sin embargo, su utilización en sistemas de información se ve dificultada porque 
éstos se encuentran normalmente escritos en lenguaje natural. Este trabajo evalúa empíricamente tres 
métodos de Aprendizaje Automático para asignar códigos de acuerdo a la Clasificación Internacional de 
Enfermedades (décima versión) a 3.335 diferentes diagnósticos de neoplasias extraídos desde UMLS®. 
Esta evaluación se realiza con tres tipos distintos de preprocesamiento. Los resultados son alentadores: un 
conocido método de inducción de reglas de decisión y modelos de entropía máxima obtienen alrededor 
de 90% accuracy en una validación cruzada balanceada.

Palabras claves: Codificación clínica, vocabulario controlado, clasificación internacional de enfermedades, 
aprendizaje por máquina, procesamiento de lenguaje natural.

Abstract

Diagnoses are a valuable source of information for evaluating a health system. However, they are not 
used extensively by information systems because diagnoses are normally written in natural language. 
This work empirically evaluates three machine learning methods to automatically assign codes from the 
International Classification of Diseases (10th Revision) to 3,335 distinct diagnoses of neoplasms obtained 
from UMLS®. This evaluation is conducted on three different types of preprocessing. The results are 
encouraging: a well-known rule induction method and maximum entropy models achieve 90% accuracy 
in a balanced cross-validation experiment. 

Keywords: Clinical coding, controlled vocabulary, international classification of diseases, machine 
learning, natural language processing.
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Introduction

Technology Assessment in Health Care (TAHC) 
improves considerably decision making in patient 
care, allowing greater efficiency in the use of 
resources and in people’s quality of life [1]. 
Evaluating medical technologies provides judging 
elements for the decision making authorities on 
the convenience of using, diffusing or accepting 

certain technologies. It also provides information to 
physicians and patients on the proper use of some 
technologies in specific health problems, and it 
orients hospitals on the most adequate solutions in 
terms of cost and effectiveness. TAHC is especially 
important in developing countries as they are 
normally consumers of technology and where health 
resources are more limited.
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One of the main difficulties of TAHC is that it 
requires Risk Adjustment, which is the general term 
to refer to “accounting for patient-related factors 
before comparing outcomes of care” [2]. In this 
analysis, “risk” does not correspond only to risk of 
death, but to a wider concept that falls into three 
broad areas: clinical outcomes of care (e.g. death, 
normal vision, etc.), resources used (e.g. length of 
stay) and patient-centred outcomes (e.g. satisfaction 
on care preferences).

The use of Risk Adjustment for measuring both 
efficiency and efficacy have recently acquired great 
relevance and it is even beginning to be considered in 
the calculation of insurance payments, the assignment 
of public resources, and the evaluation of health 
personnel [2, 3]. However, it has been found that 
current models for the estimation of Risk Adjustment 
have problems because they do not include complete 
and reliable diagnostic information. For example, 
studies in Chile have determined that 51% of the 
variation of a patient’s stay in an intensive care unit 
can be attributed to the diagnosis and its morbidities 
[4], and that the prediction of mortality improves 
by 75% when these variables are added to those 
considered by the APACHE method, which is the 
internationally most widely used physiological 
index of seriousness [5]. This has led physicians 
and health service administrators throughout the 
world to promote improvements in the processes 
of capturing the diagnostic information of their 
patients [6].

In medicine, language is a valuable representation 
and communication tool that can be used at all 
levels of the health system, affecting each of those 
levels according to its meaning. One of the main 
measures for evaluating the operation of the system 
is the diagnostic hypothesis or admission diagnosis, 
which includes the measure of the seriousness and 
complication of the patients’ condition [4].

Having coded diagnoses is necessary not only to 
evaluate the seriousness of the patients’ condition 
and get descriptive statistics, but it is also necessary 
for evaluating the effectiveness of the medical 
intervention and for generating predictive models 
of the operation of the health system [7].

Nowadays there is a large variety of controlled 
languages [8−10] that allow the standardisation of 

the process, but their large sizes and their variability 
turn simple lexicographic searches infeasible. For 
this reason, until now virtually all medical coding is 
done manually by people trained in both the medical 
field and the classification system in use, and most 
of the computer systems in this application exist 
only to support human coders [11].

As a step toward automatic coding of medical 
diagnoses, the performance of three different machine 
learning methods on classifying neoplastic diagnoses 
according to the International Classification of 
Diseases 10th Revision (ICD-10) [8] are studied. 
The choice of neoplastic diagnoses has two main 
advantages: it allows wide-range coverage of medical 
terminology because neoplastic alterations can occur 
anywhere in the body, and diagnoses coming from 
the field of pathology are considered to be definitive 
in medicine, providing the necessary templates to 
evaluate the system.

Data Source

The diagnosis source used in this work corresponds 
to the data base provided by version 2004AB of 
the Unified Medical Language System® (UMLS®) 
[10]. The process begins by providing UMLS® with 
the code of each neoplastic diagnosis contained 
in ICD-10. UMLS® delivers a Concept Unique 
Identifier (CUI) for each of them, and these CUIs 
are then used to retrieve from the database all those 
diagnoses in Spanish that come from sources other 
than ICD-10. Figure  1 shows an example of this 
process for the ICD-10 code C22.9 MALIGNANT 
NEOPLASM OF LIVER, UNSPECIFIED.

After a data cleaning process that includes 
standardising the text to upper case, replacing 
accented vowels, and deleting punctuation signs 
and parentheses, 3,335 different diagnoses in natural 
language are obtained (e.g. CANCER DE HIGADO, 
TUMOR MALIGNO DE HIGADO). This corpus 
does not contain the original ICD-10 diagnoses. In 
the example of Figure  1, the diagnoses come from 
the Spanish versions of the Medical Dictionary for 
Regulatory Activities Terminology (MedDRA), 
the Medical Subject Headings (MeSH) and the 
World Health Organisation Adverse Drug Reaction 
Terminology (WHOART).
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In a second step, these diagnoses are processed 
to introduce a structure that can provide more 
information to the classifier using the idea of 
semantic category in which the words that may 
occur in a diagnosis are separated into thematic 
axes, in the style of SNOMED® [9]. For this work, 
and in agreement with the classification system 
used in ICD-10, four axes have been considered: 
Pathological Function (PF), Idea or Concept (IC), 
Spatial Concept (SC) and Anatomical Structure 
(AS). In this way the word CARCINOMA is related 
explicitly in the data with words such as SARCOMA 
or TUMOR, since they all belong to the PF axis, 
and never with words like HIGADO, which is in 
the AS axis. Table 1 shows examples of the 1,019 
different words contained in those axes.

The process of separating words into thematic axes 
is done automatically. Each word is subjected to 
the UMLS® Semantic Network to determine its 
semantic category. Given this initial location, the 
network is navigated towards more abstract concepts 
until one of the four categories of Table 1 is found. 
Figure   2 presents two examples of this process 
for the words HIGADO (liver) and TUMOR. The 
former is assigned the category Body Part, Organ, or 
Organ Component by UMLS® Semantic Network. 
Travelling up in the network, the concept Anatomical 

Structure is found and thus this word is assigned to 
the AS axis. Similarly the word TUMOR is found 
under the category Neoplastic Function which is 
related with the more abstract concept of Pathological 
Function and the PF axis is assigned to this word.

Although the separation of words into thematic axes 
reduces part of the ambiguity found in the medical 
diagnoses in natural language, it does not solve the 
use of different words to refer to the same concept. 
Consider the examples in the first column of Table 2. 
These phrases, apparently different, refer to the same 
diagnosis. This fact is evident if the equivalences 
CANCER ≈ NEOPLASIA MALIGNA, TUMOR 
≈ NEOPLASIA, MALIGNO ≈ MALIGNA and 
HEPATICO ≈ HEPATICA ≈ DE HIGADO2 are 
considered.

2	 Spanish is a language with grammatical gender. In this example, 
the variations MALIGNO/MALIGNA and HEPATICO/
HEPATICA are used for masculine/feminine nouns. TUMOR 
is a masculine noun and NEOPLASIA is a feminine one.

> SELECT cui FROM mrconso WHERE sab = “ICD10” 
AND code = “C22.9”

“C0345904”

> SELECT str FROM mrconso WHERE cui = 
“C0345904” AND lat = “SPA”

“Tumor maligno hepatico” 
“Tumor maligno hepático” 
“Tumor hepático maligno” 
“Cancer de higado” 
“Cáncer de hígado” 
“Cáncer del Hígado” 
“NEOPLASIA HEPATICA MALIGNA” 
“Neoplasia hepática maligna” 
“Neoplasia hepatica maligna” 
“neoplasia maligna de higado” 
“Cancer Hepatico” 
 …

Figure 1.	 Retrieving diagnoses written in Spanish 
from the UMLS® database. The first 
query obtains the CUI of the diagnosis 
with the C22.9 code in ICD-10.

Table 1.	 Examples of words contained in each 
thematic Axis.

Pathological Idea or Anatomical Spatial

Function Concept Structure Concept

(PF) (IC) (AS) (SC)

CARCINOMA REDONDO CEREBRAL ASCENDENTE

SARCOMA MALIGNA HIGADO CENTRICO

TUMOR MALIGNO NASAL SUPERIOR

... ... ... ...

87 261 452 219

Figure 2. 	 Determining the semantic axis of the 
words HIGADO and TUMOR.

Disease or
Syndrome

Pathological
Function Anatomical Structure

Fully Formed
Anatomical Structure

Body Part. Organ.
or Organ Component

Neoplastic
Processtumor higado
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Thus four sets of data have been obtained for the 
experiments: diagnoses in words (W), diagnoses 
in words separated into thematic axes (W+X), 
diagnoses with encoded words (Z), and diagnoses 
with encoded words separated into thematic axes 
(Z+X). Table 4 presents the example diagnoses of 
Table 2 when the thematic axes are considered.

Machine Learning Methods

From a theoretical standpoint, assigning codes to 
pieces of text in a controlled vocabulary system can 
be seen as two different Natural Language Processing 
(NLP) tasks: Categorisation of Text, or Automatic 
Translation. Both problems are investigated actively 
around the world, and countless techniques and 
domains have been studied. This work considers 
taking the Text Categorisation perspective. This 
task can be seen as the assignment of a truth value 
to every diagnosis-code pair, where the codes must 
be taken from a predefined and finite set of labels. 
However, the task here is slightly different to the 
usual Text Categorisation tasks that can be found 
in the literature. Previous work normally consider 
hundreds of thousands of fairly large documents –
containing several paragraphs of free text– that have 
to be classified into a small number of categories. 
In contrast, this study consider each diagnosis as a 

Table 3. 	 Examples of entries contained in the 
manually built lexicon of [12].

Encoding Text

  9 TUMOR, OMA, ONC, ONCO 

11 CANCIN, CARCINO 

14 MELAN, MELANO, NEGRO, MELANOT

19 BENIGNO, BENIGNA 

22 MALIGNO, MALIGNA, MALIGNIDAD 

27 HEPAT, HEPATO, HIGADO 

28 RIÑON, REN, RENO, NEFR, NEFRO, ...

Table 2. 	 Examples of two linguistic preprocessings 
applied to different versions of the same 
diagnosis.

(W) (Z)

Words Encoded words

TUMOR 9

MALIGNO 22

HEPATICO 27

CANCER 9, 11

DE 175

HIGADO 27

NEOPLASIA 9

HEPATICA 27

MALIGNA 22

Table 4.	 Examples of the two linguistic prepro-
cessings of Table 2 when separation into 
thematic axes is applied.

(W+X) (Z+X)

Words and thematic 
axes

Encoded words  and 
thematic axes

FP: TUMOR FP: 9

AS: HEPATICO AS: 27

IC: MALIGNO IC: 22

SC: SC:

FP: CANCER FP: 9, 11

AS: HIGADO AS: 27

IC: IC: 

SC: DE SC: 175

FP: NEOPLASIA FP: 9

AS: HEPATICA AS: 27

IC: MALIGNA IC: 22

SC: SC: 

Consequently there is a third step in which words 
are replaced by numbers according to the lexicon 
manually built in [12] from a medical terminology 
dictionary. The numbers used in the lexicon do not 
represent meaningful relations. Table 3 shows some 
entries included in this lexicon. The process of 
assigning numbers to words according the lexicon, 
which will be referred as word encoding, was also 
carried out automatically.

Using these codes as preprocessing, the words 
CANCER, TUMOR and NEOPLASIA are replaced 
by the numbers <9, 11>, <9> and <9> respectively, 
so that the classifier could detect that the concept 
<9> is present in the three diagnoses. In fact, all 
three diagnoses of Table 2 contain the codes <9> 
(tumour) and <27> (liver), making more evident 
their similarity.
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document –which normally is not even a complete 
sentence– and the number of categories is given by 
the ICD-10 system which defines more than 12,000 
four-character codes.

Research in Text Categorisation has shifted in the 
last decades from the traditional NLP Knowledge 
Engineering paradigm, in which rules encoding 
expert knowledge are manually constructed, in 
favour of the Machine Leaning paradigm in which 
an inductive algorithm automatically builds a text 
classifier by learning the patterns that associate 
documents and the categories from a set of pre-
classified examples.

Most inductive machine learning approaches have 
been successfully applied for text classification [13], 
which can be allocated into three main paradigms: 
rule induction, probabilistic modelling and numerical 
optimisation. Considering that there is not enough 
research on classification of medical diagnoses to 
make a priori decisions, in this work three different 
algorithms are tested so that each method represents 
one of the above learning paradigms.

Decision List
Induction of decision rules of the form if-then 
provides a learning method that is expressive and 
easy to read by human beings. In this work the 
Ripper 2.5 algorithm [14] is used, which learns 
propositional rules efficiently, even from large 
sets of noisy data, with a performance similar to 
that of more highly developed induction methods 
such as C4.5. 

Maximum Entropy Models
A maximum entropy model (MEM) is a conditional 
probability distribution that adjusts its parameters 
to represent perfectly the training data by means 
of characteristic functions [15]. From all the 
probabilistic models that fulfil this condition, the 
approach forces the selection of the one that has the 
maximum entropy. Therefore, the model does not 
make assumptions that are not supported by known 
information. To obtain and evaluate the maximum 
entropy models presented here, the MaxEnt 2.1.0 
library [16] has been used. 

Support Vector Machines
The method proposed by Fan, Pai-Hsuen Chen and 
Chih-Jen Lin [17], and implemented in the LIBSVM 

2.82 tool [18], is utilised to create the Support 
Vector Machine (SVM) model. This method uses 
Sequential Minimal Optimisation to decompose the 
kernel function matrix in order to solve a simple 
two-variable optimisation problem at each iteration. 
The Gaussian Radial Basis Function (RBF) kernel 
has been selected for the experiments. 

Method

For the experiments, the corpus was randomly 
divided into two disjoint subsets trying to balance 
the number of examples for each class (i.e. each 
ICD-10 code). In this way two non-overlapping, 
annotated corpora are obtained, labelled A and B, 
with the purpose of carrying out a balanced cross-
validation (a.k.a. 2-fold cross-validation). Thus 
each experiment is conducted twice: the first time, 
a classifier trained only with the data contained 
in corpus A is obtained and corpus B is used to 
evaluate it; the second time, training is done with 
corpus B only and corpus A is used for testing it. 
This cross-validation allows the verification that 
the division of the data for the experiments is not 
generating biased results.

The Ripper implementation used to obtain the 
decision list generates and optimises a set of rules 
from the training set provided. In order to fairly 
compare the results of Ripper with the other machine 
learning methods, SVM classifiers and MEM 
classifiers have also been trained and parameterised 
from the data in the training subset only by using 10-
fold cross-validation. The final optimal parameters 
are reported for each case.

Ripper is used with most of its parameters set to 
default values, except that negative tests are allowed 
(-!s) and the algorithm is instructed to assume the 
data is noise-free (-c). Ripper has a nice feature: it 
can handle set-valued attributes, that is, attributes 
whose value is a set of strings. Thus Ripper can 
build rules of the form “if the string s occurs in S 
then …”, where S is a set-valued attribute. Therefore 
when the data has W or Z preprocessing, a single 
set-valued attribute is used to model the data. When 
the data is separated into thematic axes, four set-
valued attributes are used.

In these experiments, the Generalized Iterative 
Scaling algorithm [19] has been used to train the 
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maximum entropy models. This algorithm requires 
two parameters: the number of times an instantiated 
characteristic function must be seen in order to be 
considered in the model (cutoff) and the number 
of times the training procedure should be repeated 
(iterations). The maximum entropy model chosen 
in each experiment corresponds to that having the 
best performance in a 10-fold cross-validation over 
the training data among the set of 18 models that 
result from training with a cutoff that varies from 
1 to 3 and subjecting the training from 100 to 600 
iterations in increments of 100. The characteristic 
functions used are atomic of the form:

f(x, y) = {1  if y = C122 and TUMOR occurs in x
0 otherwise

When the data is separated into thematic axes, the 
characteristic functions consider this information 
and are triggered only if they belong to the axis 
of interest.

LIBSVM provides a visual tool for searching the 
best parameters for the model. In this case only two 
parameters must be adjusted: the cost that controls 
the proportion of misclassification allowed during 
training (c) and the width of the Gaussian RBF kernel 
(γ). The parameters reported in the experiments are 
those that yield the best performance in a 10-fold 
cross-validation on the training corpus after two 
search processes: after a broad initial search, a more 
focused search around the best initial parameters was 
performed. The data with W or Z preprocessing are 
represented as a binary input vector for LIBSVM 
in which the ith position of the vector has a value 
of 1 if the ith word –or word code– is present in 
the diagnosis, and a value of 0 otherwise. For the 
data with W+X or Z+X preprocessing a non-binary 
input vector is used in which each axis has a number 
of positions equal to the maximum number of 
words that occur simultaneously in a diagnosis. 
Each position is filled with an integer number that 
represents the word or word code. Unused positions 
are filled with a value of 0.

The performance of each classifier is measured 
in terms of accuracy, in disfavour of the more 
classical recall and precision, because the corpus 
contains positive examples only. Additionally, two 
statistical tests are used to evaluate the significance 
of the results. On the one hand, the differences 

in accuracy –i.e. considering only the proportion 
of examples misclassified– are assessed with the 
χ2 test for equality of distributions. On the other 
hand, the non-parametric McNemar test is applied 
to determine whether differences in the examples 
wrongly classified are significant. In all tests, a 5% 
nominal level (p < 0.05) is considered significant.

Results

Models were built in a common desktop computer 
with 1MB of memory. Ripper models could be trained 
in few minutes. MEM and SVM models took longer 
as they were parameterised with a 10-fold cross-
validation, though no model required more than 1 
hour to be completed. All methods are very fast to 
be applied and the testing corpus was completely 
classified in few seconds by each model.

Table 5 shows the performance of the three machine 
learning methods for all experiments carried out. 
The fourth column shows the parameters used 
in each measurement, resulting from the 10-fold 
cross-validation on the training corpus.

The main observation derived from Table 5 is that 
all the algorithms can generate robust classifiers: 
all of them obtain accuracy greater than 80% with 
at least one of the preprocessing. This result is 
validated by the χ2 test which indicates that there is 
not a significant difference between the classifiers 
based on the same paradigm when trained with 
corpus A or with corpus B (p ≥ 0.24 in all cases).

It can also be seen in this table that the different 
preprocessings have an important impact on the 
classifiers. In effect, each learning algorithm  
–namely Ripper, LIBSVM and MaxEnt– generates 
eight different classifiers (four preprocessings times 
two training corpora). Comparing the performance 
between the different classifiers generated by each 
algorithm, the McNemar test strongly indicates that 
31 out of the 36 pairs present statistically significant 
differences.

Moreover, the SVM classifiers are specially affected 
by the preprocessing schemes as all versions show 
significant differences between them in terms of 
both accuracy and the examples misclassified (p = 
0.00 in all cases). Separating word into thematic 
axes (preprocessing W+X) does not contribute to 
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the classifiers based on Ripper and MEM –which 
do not present a statistical significant difference in 
accuracy with preprocessing W– but it negatively 
affects the ones based on SVM. To some extent this 
was expected because the preprocessing schemes 
that consider thematic axes introduce numerical 
variability in the input vectors, making more difficult 
for this kind of classifier to obtain an optimised 
separation.

The statistical tests also indicate that coding words 
(preprocessing Z) cannot be fully exploited by the 
Ripper algorithm (p ≥ 0.05 when compared with 
the corresponding Ripper-based classifier using 
preprocessing W), but it helps the SVM-based and 
MEM-based classifiers to obtain better performance 
(p ≤ 0.01 when tested against preprocessing W). 
This indicates the reduction in the size of the input 
vectors can be exploited by SVM method and the 

probability model built by the MEM algorithm, 
but it cannot be captured completely by the few 
hundreds of rules generated by the Ripper algorithm.

Separating encoded words into thematic axes 
(preprocessing Z+X) does yield an improvement in 
the accuracy obtained by the Ripper-based and MEM-
based classifiers (p = 0.00 against preprocessing Z in 
all cases), but it significantly worsens the performance 
of the classifiers based on SVM (p = 0.00 against 
preprocessing Z in all cases). This suggests the 
reduction of lexical variability obtained through 
the preprocessing Z is made more apparent to the 
classifiers when combined with the separation in 
thematic axes. The drop in performance of the SVM 
classifiers with this preprocessing seems to be more 
related to the corresponding representation of the 
input –which are vectors of integer now instead of 
binary vectors– than to its own generalisation ability.

Table 5.	 Results of each experiment in terms of accuracy.

Training set Test set Algorithm Parameters Accuracy

A(W) B(W) Ripper -c -!s 80.26% 

LIBSVM c = 213  γ = 2-8 79.15% 

MaxEnt cutoff = 1 iterations = 600 82.17% 

B(W) A(W) Ripper -c -!s 78.59% 

LIBSVM c = 213  γ = 2-8 78.70% 

MaxEnt cutoff = 1 iterations = 200 82.96% 

A(W+X) B(W+X) Ripper -c -!s 80.81% 

LIBSVM c = 213  γ = 2-13 69.40% 

MaxEnt cutoff = 1 iterations = 300 80.88% 

B(W+X) A(W+X) Ripper -c -!s 81.39% 

LIBSVM c = 213  γ = 2-13 68.79% 

MaxEnt cutoff = 1 iterations = 500 82.50% 

A(Z) B(Z) Ripper -c -!s 81.74% 

LIBSVM c = 213  γ = 2-13 86.67% 

MaxEnt cutoff = 1 iterations = 100 86.12% 

B(Z) A(Z) Ripper -c -!s 81.33% 

LIBSVM c = 213  γ = 2-13 85.88% 

MaxEnt cutoff = 1 iterations = 100 86.11% 

A(Z+X) B(Z+X) Ripper -c -!s 90.07% 

LIBSVM c = 216  γ = 0.0001 53.30% 

MaxEnt cutoff = 1 iterations = 100 89.70% 

B(Z+X) A(Z+X) Ripper -c -!s 89.26% 

LIBSVM c = 216  γ = 0.0001 53.38% 

MaxEnt cutoff = 1 iterations = 200 90.20% 
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Consequently, the best classification are obtained 
with the preprocessing Z+X by the models based 
on Ripper and MEM, which do not present a 
statistical significant difference between them  
(p ≥ 0.22 in both tests).

Related Work

It is difficult to compare these results with previous 
studies as most of them use natural language 
processing techniques more extensively, mainly 
because the problem is oriented at identifying clinical 
information of interest in complete medical reports. 
The coding is done as a later stage with techniques 
as simple as string matching and look-up tables, 
or as complex as expert systems and Bayesian 
networks [20-22].

There has been some work that makes use of 
machine learning with methods such as k-nearest 
neighbour, decision lists, decision trees, and naïve 
Bayes classifiers [23-24]. Although these attempts 
have been relatively successful at this task, most of 
them are not sufficiently reliable to replace human 
codifiers.

The work of Franz, Zaiss, Schulz, Hahn and Klar 
[21] is the closest to the one being presented here. 
They also attempted to codify, in ICD-9, sentences 
in German that represent medical diagnoses, in 
contrast with the other approaches that process text 
that is not so restricted. Franz, Zaiss, Schulz, Hahn 
and Klar [21] also evaluate three methods: the first 
is based on the similarity of all trigrams contained 
in the diagnosis; the second and third methods 
are based on the application of a morphological 
segmentation process and then they look up each 
term in SNOMED®, and they differ in the technique 
for recovering the corresponding codes.

Franz, Zaiss, Schulz, Hahn and Klar report between 
31% and 41% accuracy in the assignment of complete 
ICD-9 codes, far less than the performance achieved 
in this study. However, part of this difference is 
explained by the fact that Franz, Zaiss, Schulz, 
Hahn and Klar used actual diagnoses, as written by 
physicians, whereas the diagnoses used here were 
derived from controlled languages.

Conclusions and Future Work

This study has successfully obtained two trainable 
approaches that automatically classified medical 
diagnoses in natural language with 90% accuracy. 
This performance is achieved when the words in 
each diagnosis are replaced with concept codes 
(preprocessing Z) and separated into thematic axes 
(preprocessing X).

This is an important contribution as these classifiers 
could constitute the core of a computer-assisted 
clinical coding system, which would undoubtedly 
reduce the time invested in the task. Indeed, the role 
of the human coder will be mainly the verification 
of the code assigned by the automatic system. Only 
when this code is wrongly selected, the human coder 
will have to look for the appropriate one.

Moreover, as one of the successful approaches is 
based on probabilistic models (MEM), an ordered 
ranking of possible codes for a diagnosis in natural 
language can be obtained. This feature might be 
exploited to build a computerised (sub-) system 
that would allow primary codification, that is, the 
person responsible for assigning the right code is 
the physician making the diagnosis. Only when the 
correct code is not included in the list of most probable 
codes, the codification needs to be secondary, in 
which a human coder has to interpret the diagnosis 
written by the physician. Such application would 
considerably reduce the time dedicated to this task 
by doctors, one of the main disadvantages of primary 
codification [25], whilst avoiding the consistency 
problems found in secondary codification [26].
 
One limitation of this study is that the encouraging 
results reported in this work are achieved with 
a corpus of diagnoses obtained from controlled 
languages. Although a decrease in the performance 
of the methods studied can be expected when 
evaluated with real diagnoses written by physicians, 
it is unlikely that this drop in performance will be 
so significant as to remove the advantage obtained 
with respect to previous methods.

There are several ways in which this research 
can be continued in future work. A point to be 
improved is that the preprocessing Z uses a 
vocabulary of synonyms built manually, which has 
two disadvantages. Firstly, it is difficult to build 
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and maintain a complete dictionary and therefore 
the approach could be missing some relevant 
information. Indeed the presence of this kind of 
noise in the data has been noticed. Secondly, the 
portability of the approach is affected because in 
order to extend its functionality to another medical 
field –other than neoplasms– a new dictionary must 
be created. Morales reported that this lexicon took 
30 days to be built [12].

Therefore, an important job to be carried out is to 
make the acquisition of this dictionary automatic. This 
requires, at least, work for detecting morphological 
variations, word segmentation and identification 
of synonymous terms. Future versions of UMLS® 

might implement, for Spanish, the lexicographic 
tools that are available for the English language, 
making easier the automation of this preprocessing.

Another potential difficulty that must be addressed is 
the presence of typographical errors, acronyms and 
abbreviations in the diagnostic text. A preprocessing 
step aimed at correcting or expanding these tokens 
could be necessary before a diagnosis is presented 
to any classifiers.

Finally, the fact that different combinations of 
preprocessing/learning algorithm misclassify different 
diagnoses strongly suggests that a combination of the 
classifiers could yield an improvement in accuracy.
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