
Ingeniare. Revista chilena de ingeniería, vol. 22 Nº 2, 2014, pp. 218-232

Design method for a Historical Data Warehouse,
explicit valid time in multidimensional models

Método de diseño de un Data Warehouse Histórico,
 tiempo válido explícito en modelos multidimensionales

Carlos G. Neil1   Marcelo E. De Vincenzi1   Claudia F. Pons1

Recibido 19 de noviembre de 2012, aceptado 6 de enero de 2014
Received: November 12, 2012   Accepted: January 6, 2014

RESUMEN

Presentamos una nueva estructura de almacenamiento que denominamos DW Histórico y que contiene,
explícitamente, el tiempo válido. Nuestra propuesta combina, en un modelo integrado, una Base de
Datos Histórica y un DW. El objetivo del modelo propuesto es resolver las limitaciones temporales
de las estructuras multidimensionales tradicionales. Aunque el DW Temporal considera, además de la
dimensión temporal, otros aspectos vinculados con el tiempo, este modelo solo contempla los cambios
que se producen en las dimensiones y jerarquías. Por consiguiente, en virtud de contemplar la necesidad
de registrar valores que permitan evaluar tendencias, variaciones, máximos y mínimos, un problema a
resolver es cómo registrar, en el diseño de la estructura multidimensional, la variación temporal de los
valores de entidades, atributos e interrelaciones, ya que, si bien sabemos que los datos necesarios están
almacenados, los mecanismos de búsqueda temporal serían complejos. El diseño del DW Histórico está
enmarcado en el enfoque del Desarrollo de Software Dirigido por Modelos, una estrategia que permite,
mediante sucesivas transformaciones automáticas, obtener una implementación del modelo multidimensional
en un Sistema Administrador de Base de Datos Relacionales (SABDR).

Palabras clave: Método de diseño, desarrollo de software dirigido por modelos, data warehouse, base de
datos histórica, tiempo válido.

ABSTRACT

We present a new storage structure that contains the explicit valid time called Historical DW. This proposal
combines a Historical Data Base and a DW in one integrated model. The objective of this model is to
solve the temporal limitations of the traditional multidimensional structures. Although the Temporal DW
considers, besides the temporal dimension, other aspects related to time, this model only takes into account
the changes that occur in the DW schema, both in dimensions and in hierarchies. Therefore, considering
the need for registering values that allow to evaluate trends, variations, maximum and minimum values,
a problem to be solved is how to shape the values of entities, attributes or relationships that may vary
in time, in the design of the structure. The fact that the needed data was stored is already known, but
the temporal search mechanisms would be complex. The Historical DW design is framed in the MDD
approach, a strategy that allows, through successive automatic transformations, to obtain one of the
implementations of the model in a Relational Data Base Management System (RDBMS).

Keywords: Design method, model driven software development, data warehouse, historical data base,
valid time.

1	 Facultad de Tecnología Informática. Universidad Abierta Interamericana. Buenos Aires, Argentina. E-mail: carlos.neil@uai.edu.ar;
medevincenzi@uai.edu.ar; claudia.pons@uai.edu.ar

Neil, De Vincenzi and Pons: Design method for a Historical Data Warehouse, explicit valid time in multidimensional models

219

INTRODUCTION

A Data Warehouse is a “subject-oriented, integrated,
nonvolatile, and time-variant collection of data
in support of management’s decisions” [10]. A
distinctive characteristic of the Data Warehouse is
that time is one of the dimensions for the analysis [4,
7], but this refers to the moment when a transaction
was made, therefore, it does not specify how or
when the values of the entities, attributes and
relationships associated with these transactions
have varied through time. Although the Temporal
Data Warehouse considers, besides the temporal
dimension, other aspects related to time [5, 6, 9],
this model considers only the changes that occur in
the Data Warehouse schema, both in dimensions and
in hierarchies. Therefore, a problem to be solved in
this type of multidimensional structure, considering
the need for registering values that allow to evaluate
trends, variations, maximum and minimum values,
is how we shape the values of entities, attributes or
relationships that may vary in time in the design of
the multidimensional structure; since, although the
needed data of information was stored, the temporal
search mechanisms would be complex [21].

Several methods have been proposed that allow
to derive the conceptual multidimensional schema
from data sources of the organization and/or of the
user’s requirements (see [7, 32]); most of them
must be done manually [26]. A solution to this
problem is proposed by Model Driven Software
Development, this approach has become a new
paradigm of software development that promises
improvements in the software construction based
on a model-driven process and supported by
powerful tools. This new paradigm aims to improve
productivity and software quality generated by
reducing the semantic leap between the problem
domain and the solution [25].

The proposed design method consists in successive
automatic and semiautomatic transformations of
models, that begin with an ER model and that finally
allow to obtain a temporal multidimensional model
expressed as a set of tables in the relational model.
The complete proposal includes the automatic
creation of a Graphic Query Interface derived from
the Historical Data Warehouse that, by means of
marks on a graph, automatically creates temporal
and decision-making SQL query statements, [23].

The work is complemented with the creation of a
prototype based on ECLIPSE technology, which
implements the design method of Historical Data
Warehouse, the Graphic Query Interface and the
automatic execution of SQL statements [35].

To corroborate the proposal empirically, an evaluation
of this work was carried out by means of a qualitative
research, through a controlled experiment using
questionnaires with open-type questions. The
research was conducted with students from the
Master’s Degree in Information Technology from de
School of Information Technology of the Universidad
Abierta Interamericana. As a first conclusion, from
the assessment performance, we consider that the
submitted proposal constitutes a valid alternative
in the design of multidimensional structures, in the
proposal of the design method, and in the storage
structure and in the graphical query interface. For
more details see [22].

The paper is organized in the following way: firstly,
we present the preliminary concepts; secondly, we
describe the main characteristics of the Historical
Data Warehouse; thirdly, we detail the design method
of the Historical Data Warehouse; fourthly, we
describe the transformations in informal language;
in the fifth place, we present the metamodels used in
the transformations; then, we present the automatic
transformations; after that, we present the related
work; following this, we describe the conclusion
and, finally, the future works.

PRELIMINARY CONCEPTS

In this section we will present basic concepts of
Data Warehouse, Temporal Data Base and Model
Driven Software Development, which allow to
support the proposal.

Data Warehouse
The companies use the operational data accumulated
over the years and stored in structures ad hoc called
Data Warehouse to help understand and manage their
activities. While an Operational Data Base maintains
current data, the Data Warehouse maintains historical
data of the company; as a result, the underlying data
structures, in order to grow constantly over time
require a high storage capacity. Codd [3] introduced
the term On Line Analytical Processing (OLAP), in
1993, to characterize the summary requirements,

Ingeniare. Revista chilena de ingeniería, vol. 22 Nº 2, 2014

220

consolidation, vision and synthesis of data through
multiple dimensions. The multidimensional model
is the basis of the Data Warehouse. In this model the
information is structured in facts and dimensions;
a fact is a topic of interest for the company, it is
described by means of fact attributes, and these are
contained in cells or points in the data cube. A data
cube is a multidimensional representation of data
that can be seen from different points of view; a
data cube is formed by dimensions, which determine
the granularity for the representation of facts and
hierarchies that show how instances of facts can
be grouped and selected for the decision-making
processes [1].

Historical Data Base
In an Operational Data Base, the information
becomes effective when it is established and it is
considered valid until a new update modifies it;
therefore there is no distinction between the time
of registration of that information in the Data Base
and the period during which the specific values of
the facts related to this information are valid in the
universe of discourse. Thus, the Data Base represents
only the current state and not the history of the
reality facts that it was modeling. Furthermore, a
Temporal Data Base supports some aspect of time,
without taking into account user-defined time [11].

In a Temporal Data Base, an instant is a time point
on an underlying time axis; a time interval is the
time elapsed betw[een two instants; a timestamp
is a temporal mark associated with an object or
attribute of the Data Base. The valid time of a fact
is the time when the fact is true in the modeled
reality. A fact may have any number of instants and
time intervals associated, these single instants and
intervals are important special cases. Valid times
are usually supplied by the user [11]. In practice,
the valid time is the most important concept since
it models the veracity of the facts recorded in the
universe of discourse, which is the main objective
of the information systems [20].

A Data Base fact is stored in a Data Base at some
point in time, and after it is stored, it is present
until logically deleted. The transaction time of a
Data Base fact is the time when the fact is present
in the Data Base and may be retrieved. Transaction
time values cannot be later modified. Also, as it is

impossible to change the past, transaction times
cannot be changed [11].

The different types of Data Bases are connected, in
its definition, to the concepts presented above. A
Data Base that models only the valid time is called
Historical Data Base, a Data Base that models only
the transaction time, is called RollBack Data Base
and the one that models both the valid time and
transaction time, is called BiTemporal Data Base [11].

Model Driven Architecture
The Model Driven Software Development proposes
architecture for the development of computer
systems whose goal is to provide a solution for
easily adapting the system to changes on business
and technology. This approach represents a new
paradigm where models of the system, at different
levels of abstraction, are used to guide the entire
development process. Models are implementation-
independent and they are automatically transformed
to executable code.

This new paradigm aims to improve productivity
and to generate software quality by reducing the
semantic leap between the problem domain and
the solution [25]. The key underlying idea is
that, if working with models, important benefits
in interoperability, productivity, portability,
maintenance and documentation will be obtained
[12]. We can divide, briefly, the Model Driven
Software Development process into three phases;
in the first one, a Platform Independent Model
(PIM) is built, this is a high-level model of the
system being developed independently of any
technology; then, the previous model is converted
into one or more Platform Specific Models (PSM),
these models are at a lower level than the PIM and
describe the system in accordance with a particular
implementation technology; and finally, the last one
generates an Implementation Model (IM), this is, a
source code from each PSM. The division between
PIM and PSM is linked to the concept of platform,
which, by not being specifically defined, it does
not establish the dividing line between PIM and
PSM. Model Driven Software Development also
presents a Computation Independent Model (CIM)
that describes the system within its environment and
shows what is expected from it without showing
any details of how it will be built.

Neil, De Vincenzi and Pons: Design method for a Historical Data Warehouse, explicit valid time in multidimensional models

221

The main benefit of the Model Driven Software
Development approach is that once every PIM has
been developed, we can derive automatically the
rest of the models by applying the corresponding
transformations in vertical form.

HISTORICAL DATA WAREHOUSE

The Historical Data Warehouse is a new structure
of data storage that combines and integrates a Data
Warehouse and a Historical Data Base in a single
model. This model includes, besides the main
analytical fact, temporal structures related to the
levels of dimensional hierarchies that allow to record
data and retrieve information that varies in time.

Conceptual Model
The conceptual model of the Historical Data
Warehouse is composed of a fact and a set of
dimensions; the latter are represented by simple
or multiple hierarchical levels (temporal and not
temporal) [22].

To express the valid time, we will use the notation
[IT, FT) as the representation of the validity interval,
where the attribute IT (Initial Time) will be the first
instant and the attribute FT (Final Time) the last
instant of the described interval. On the other hand,
we will consider the interval close/open that will
include the instant IT and exclude the instant FT.

The main fact may have one or more fact attributes, as
well as attributes that are not interpreted as measures
but that will be able to be used to identify a particular
instance of the fact (degenerated dimensions).
Schematically (Figure 1), the model is composed
of a fact (F) that contains a set of attributes (idi0,
i= 1, 2,…, n) that, individually, refers to each of the

lowest levels of granularity of the dimensions (ni0,
i= 1, 2,…, m) and, as a whole, this set identifies
a particular instance of the fact; also the fact may
contain one or more measures (mi).

Each dimension ni consists of hierarchical levels
(ni0, ni1, ni2,… nij, i= 1, 2,…, n; j= 1, 2,…, q); all
the levels will have an identifier attribute (idni)
plus an attribute that refers to the greater level of
granularity (idni+1), except for the last level of the
hierarchy. Moreover they may have descriptive
attributes (non-dimension attributes). The hierarchy
levels (e-tempi, a-tempi, r-tempi) represent entities,
attributes, and temporal relationships respectively
and they constitute non strict hierarchies. The
hierarchy level that symbolizes a temporal entity
(e-tempi) has a composed attribute that identifies it,
formed by the identifier of the level that represents
the entity (this identifier will also refer to the entity)
plus the attribute called IT ({idni, IT}); it also has
an attribute denominated FT. The attributes IT
(Initial Time) and FT (Final Time) will determine
both the initial and final instances of the temporal
interval considered respectively. The hierarchy level
that represents a temporal attribute (a-tempi) has a
compound attribute that identifies it ({idni, IT}),
consisting of the level identifier that represents the
entity (this identifier will also refer to the entity)
plus the attribute called IT; the temporal interval also
has two attributes denominated FT and value. The
hierarchy level that represents a temporal relationship
(r-tempi) has a compound attribute that identifies
it ({idni, TI}), formed by the identifier of one of
the levels that it links (the identifier will also refer
to the level) plus the attribute denominated IT; the
temporal relationship also has an attribute that will
refer to the other level that links (idni+1), plus an
attribute called FT. In the temporal hierarchies, the
attributes IT and FT represent the extreme values of
the temporal close-open interval [IT, FT).

Example of a Historical DW
In Figure 5, we showed an example of a Historical
Data Warehouse; where both typical queries of a
Data Warehouse and queries of a Historical Data
Base can be made.

For example, the following are typical queries: At
what intervals was a particular client active? On
which dates did it change and which was the price
of a particular product? Which was the price of a Figure 1. 	 Temporal Multidimensional Model.

Ingeniare. Revista chilena de ingeniería, vol. 22 Nº 2, 2014

222

particular product on a certain date? On what dates
and where did a particular client move? Which was
the location of a particular client on a certain date?

These are specific queries of a Historical Data
Base and could not be performed in a common
Data Warehouse. These queries (and the ones of
decision-making) can be performed in our model
using a Graphical Query interface [23].

Design Method for a Historical DW
The transformation method that begins with an ER
model that describes the source data schema of
the Operational Data Base, until the obtaining of
a Historical Data Warehouse (implemented in an
RDBMS) proposes a number of steps, described
informally and detailed below. The transformation
method will begin with an ER model and, by means
of successive transformations, will allow to obtain
a set of tables in a Relational Model expressed in
SQL sentences.

Below, we will detail how the informal transformation
process is; we will show, step by step, each of the
transformations in detail. Initially, starting with a
Data Model (Figure 2), we will obtain a Temporal
Data Model (Figure 3). The Temporal Data Model
includes the transformation from the relationship
fact to an entity fact; then, from the previous model
we create a Temporal Attribute Graph (Figure 4);
afterwards from this one we will obtain a Historical
Data Warehouse (Figure 5); from this last one we
will model a Relational Model and, finally, we
will obtain SQL sentences for its implementation
in an RDBMS.

To explain the method, we will use and develop an
example that shows the different transformations. Let’s
present the example: “The Company manufactures
and centralizes business operations in Buenos
Aires, but its clients are geographically distributed
throughout the country. It carries out product sales
from customers’ orders that are located in different
provinces, records transactions performed, the dates
and quantities sold”.

INFORMAL TRANSFORMATIONS

From Data Model to Temporal Data Model
Below we will detail how to transform the Data Model
(Figure 2) to a Temporal Data Model (Figure 3).

A temporal entity in the source model will be
represented, in the target model, by means of a
temporal (weak) entity associated with the (ex)
temporal (regular) entity. The new entity will carry
the same name as the regular entity and will end in
“-T”. The temporal entity will contain an attribute
called FT and a unique identifier (compound) formed
by the identifier of the regular entity plus an attribute
called IT; the close-open interval [IT, FT), will
represent, now, the lifetime of the temporal entity.
The relationship between these two entities will be
marked with a “T”, the multiplicities of the role of
the weak entity will be (1, 1). The multiplicity of
the role of the regular entity will be (1, N).

Figure 2.	 Data Model.

Figure 3. 	 Transformed Data Model.

Figure 4. 	 Temporal Attribute Graph.

Neil, De Vincenzi and Pons: Design method for a Historical Data Warehouse, explicit valid time in multidimensional models

223

A temporal attribute in the source model will be
transformed, in the target model, in a temporal (weak)
entity associated with the entity that owns the attribute.
The name of the entity will be the same as the name
of the temporal attribute and it will end in “-T”. The
temporal attribute will have as descriptive attributes,
the attribute denominated FT and an attribute that
will have the same name and domain as the attribute
transformed in temporal in the source model. The
unique identifier (compound) of the temporal entity
will consist in the attribute called IT plus the identifier
of the regular entity. The close-open interval [IT,
FT), will represent the valid time of the temporal
attribute. The multiplicity of the role of the temporal
entity will be (1, 1); the multiplicity of the role of
the regular entity will be (1, N). The attribute that
was transformed to temporal will disappear as such
in the regular entity of the new model.

A temporal relationship, in the source model, will
transform into a temporal entity (weak) linked to
one of the entities that form the relationship in the
target model. The name of the new entity will be
established as a combination of the name of the
elected regular entity and will end in “-T”, the
multiplicities of the role of the related entities will be
(1, N), the multiplicities of the role of the temporal
entity will be (1, 1). The new temporal entity will
have as descriptive attribute, the attribute denominated
FT plus the attributes that the relationship will
have in the ER source model. The unique identifier
(compound) of the temporal entity will consist in the
attribute called IT plus the identifier attribute of the
entity that gave the name (it will represent a weak
entity of that one). The relationship that became

temporal will remain as non-temporal to allow, in the
subsequent transformation processes, to be source
of a possible level of grouping in the dimension. All
the entities and non-temporal relationships, in the
source model, will remain without modifications
in the target model. All the non-temporal attributes
(both entities and relationships), in the source model,
will stay in the target model, unlike the attributes
transformed in temporal attributes.

The fact (if represented by a relationship) in the
source model, will become an entity related to the
two entities that are part of the relationship in the
target model. The name of the entity will be the
same as the one of the relationship, the multiplicity
of the role of the linked entities will be (1, N), the
multiplicities of the role of the transformed entity
will be (1, 1). The fact will have the attributes of
the relationship (if any) as descriptive attributes
and the union of the identifier attributes related to
the relationship as a unique identifier.

From Temporal Data Model to Temporal
Attribute Graph
As an intermediate step in the design of the Historical
Data Warehouse, a modified Temporal Attribute
Graph [7] will be built, from the Temporal Data
Model (Figure 3), to be used, later, as a source
model for the construction of the Historical Data
Warehouse.

For the construction of the Temporal Attribute
Graph (Figure 4), the main fact, in the Temporal
Data Model, will be identified, first, as a concept
of primary interest for the decision-making process
in the Historical Data Warehouse. The fact will
correspond to events that occur dynamically in the
reality and will be represented, in the adapted model,
by an entity. The main fact will be composed of
vertexes, each one will represent an attribute, that
may be simple or compound and that will belong
to the source model.

We will detail the characteristics of the graph: the
root of the graph will correspond to the identifier
of the fact in the model. For each non-temporal
vertex v, its corresponding associated attributes will
determine functionally to all attributes that apply
to the descendants of v. Each vertex v labeled with
a “T” will correspond to a temporal vertex, this
in turn, can be “terminal” or “non-terminal”, and

Figure 5. 	 Historical Data Warehouse.

Ingeniare. Revista chilena de ingeniería, vol. 22 Nº 2, 2014

224

the first one will be derived from an attribute or a
temporal entity in the model whereas the second
one will be derived, from a temporal relationship.
The vertexes “Terminal” do not have descendant
vertexes whose attributes are identifiers. The vertexes
“non-Terminal” has descendant vertexes whose
attributes are identifiers.

Construction of a Temporal Attribute Graph
Given an identifier (E) that indicates a set of
attributes that identify the entity E in the source
model, the Temporal Attribute Graph will be able
to be constructed automatically by applying the
following recursive function [22].

Function translate (E: Entity): Vertex
{
	 v = newVertex(E);
// newVertex(E) creates a new vertex, containing
// the name and the identifier of the object E
	 for each attribute a ∈ E  a ∉ identifier(E) do
	 addChild (v, newVertex(a));
//adding a child “a” to the vertex v
	 for each entity G connected to E
	 by relationship Rmult-max(E,R)=1 or
	 (R is temporal and E is not temporal) do
//are considered temporal entities
//and infinite loops are avoid
	 {for each attribute b ∈ R do addChild (v,
	 translate(G)); }
	 return(v)
}

From Temporal Attribute Graph to
Multidimensional Model
The transformation process of the Temporal Attribute
Graph to the Temporal Multidimensional Model
(Figure 1), implies the choice of which vertexes
of the graph will be considered measures in the
fact and which dimensions or levels of hierarchies
(temporal or not). All of them depend on the
designer’s decisions. Unlike the choice of the fact,
that will directly derive from the root of the graph.
The identifier attributes of the nodes in the graph
will be preserved in the Temporal Multidimensional
Model for the subsequent transformation to the
Relational Model. The concepts of root, leaf, child
and parent were taken from [19].

The general approach that we will use in the
transformation is as follows: The fact of the graph

in the Temporal Attribute Graph will correspond to
the fact in the Temporal Multidimensional Model;
its name will be the same as the one of the root.
The identifier attributes in the root node will be
identifier attributes in the fact.

All the vertexes linked to the root in the Temporal
Attribute Graph, which are neither identifiers nor
attributes that denote temporal aspects (the latter will
be transformed in leaves of the temporal hierarchy
level) will correspond to measures. A fact may lack
measures.

The leaf levels in the hierarchy should be chosen
in the Temporal Attribute Graph between vertexes
children of the root. Their choice will be crucial for
the design of the Historical Data Warehouse since
they will determine the lowest level of granularity of
the instances of the fact. In the Temporal Attribute
Graph, the vertexes linked to the fact, that will not
be identifiers, will be the leaves in the Temporal
Multidimensional Model; the vertexes associated
with them, which will not be identifiers, will be non
dimension attributes, the name of the vertex will
be the same as the one of the leaf. The multiplicity
of the role fact will be (1, N), the multiplicity of
the role leaf will be (1, 1). The leaf levels in the
hierarchy are linked to the main fact; therefore, each
one of the attribute identifiers of the fact will be a
reference to each one of the leaf hierarchy levels,
so as to establish a “many-to-1” between the fact
and leaf levels.

The fact should have an associated vertex that denotes
temporal aspects. It will become leaf temporal of the
time dimension in the Temporal Multidimensional
Model, if this is not the case, because there is not
an attribute of these characteristics in the Temporal
ER model, the leaf temporal will be directly forced
in the Temporal Multidimensional Model and the
temporal dimension identifier will be added to the
fact identifier. The multiplicity of the role fact will
be (1, N), the multiplicity of the temporal role leaf
will be (1, 1).

The vertexes linked to the adjacent nodes to the
root, in the Temporal Attribute Graph, which are
identifiers, will be transformed in parent levels of
the hierarchy into the Temporal Multidimensional
Model. The name of the parent level will be the
same as the one of the vertex and its identifier will

Neil, De Vincenzi and Pons: Design method for a Historical Data Warehouse, explicit valid time in multidimensional models

225

be the same as the identifier of the node, all the
vertexes linked to that level, which are identifiers,
will also be linked to parent levels. The vertexes
that are not identifiers will be level attributes. All the
child levels in the hierarchy will have an attribute
that will make reference at the parent level. In all
the levels of the hierarchy, the multiplicity of role
of the parent will be (1, 1), the multiplicity of child
role will be (1, N).

The temporal vertexes (marked with “T”), in
the Temporal Attribute Graph, linked to the
vertexes transformed into levels of the hierarchy
in the Temporal Multidimensional Model will be
transformed in temporal levels, the level name will
be the same as the one of the vertex and the identifier
will be the same as the identifier of the node. If the
vertex was “Terminal”, all the linked vertexes, will
be leaves and, therefore, will not be identifiers, they
will be attributes of the temporal hierarchy in the
Temporal Multidimensional Model. Besides, the
attribute that is not part of the temporal interval,
will make reference to the linked hierarchy level. If
the vertex was “non-Terminal”, it would be linked
to the two non-temporal hierarchies described in
the graph; therefore, the temporal level will have
references to these two levels. All the vertexes linked
to the temporal nodes that are not identifiers, will
be temporal vertex attributes.

From Temporal Multidimensional Model to
Relational Model
The next step in the transformation is the creation of
a Relational Model. Therefore, from the Temporal
Multidimensional Model we will obtain a set of
relational data structures by applying the following
transformation rules. The transformation process
will be detailed below.

The representation of the fact in the Temporal
Multidimensional Model, will be transformed into
a table in the Relational Model; the measures will
be the columns of the table; the primary key will
be composed of a set of the identifier attributes of
the leaf levels; the attributes forming the primary
key will also be foreign keys that will refer to each
one of the resulting tables from the transformation
of leaf levels associated to the fact.

The leaf levels will become tables in the Relational
Model; the attributes will be columns of the table,

the primary key will be composed of a group of the
identifier attributes of each level; in addition, each
table leaf will have a foreign key that will refer to
each one of the tables that form the hierarchy levels.

The levels in the hierarchies in the Temporal
Multidimensional Model will become tables in the
Relational Model; the level attributes will be columns
of the table; the primary key will be composed by
the group of the identifier attributes of the level;
also, each table child will have a foreign key that
will refer to each one of the linked tables parent.

The temporal hierarchy levels in the Temporal
Multidimensional Model will become tables in the
Relational Model. If this becomes from a temporal
entity, it will have the FT as an attribute; the primary
key will be composed of the union of the primary
key of the related hierarchy table (in addition, it will
be the foreign key that will refer to this hierarchy
table) plus IT attribute. If the temporal hierarchy is
derived from a temporal attribute, it will have the
attribute FT plus the attribute that is necessary to
conserve temporarily as attributes; the primary key
will be composed of the union of the primary key
of the related hierarchy table (in addition, it will be
the foreign key that will refer to this hierarchy table)
plus the attribute IT. If the temporal hierarchy level
comes from a temporal relationship, it will have as
an attribute the FT and the attribute that represents
the primary key of one of the related hierarchy tables
(also, it will be the foreign key that will refer to the
hierarchy table); the primary key will be composed
of the union of the primary key of the other related
hierarchy table (in addition, it will be the foreign
key that will refer to this hierarchy table) plus the
attribute IT.

From Relational Model to Tables
The transformation of the Relational Model to the
Data Model expressed in SQL sentences is immediate.
Each attribute has a data type, which will have to be
transformed (using a defined conversion table) to
existing SQL data types. Below, the Pseudotables
from the Relational Model transformed in the
previous section are shown:

SALE(productID(PRODUCT),
customerID(CUSTOMER), date, quantity, price)
PRODUCT(productID, …)
CUSTOMER(customerID,…)

Ingeniare. Revista chilena de ingeniería, vol. 22 Nº 2, 2014

226

CUSTOMER-T({customerID (CUSTOMER),
IT}, FT)
TOWN(townID,…)
PRICE-T(productID(PRODUCT), IT, FT, price)
TOWN-T({CUSTOMER(CUSTOMER-T), IT},
FT, townID(TOWN))

METAMODELS

A metamodel is a mechanism that allows to define
modeling languages formally. Therefore, a metamodel
of a language (graphical or textual) is a precise
definition of its elements by using concepts and
rules of a certain meta-language needed to describe
models in that language.

The Meta Object Facility (MOF) [13] defines a
common and abstract language to define modeling
languages and the form to access and exchange
models expressed in these languages. There are two
fundamental reasons for using metamodels in the
Model Driven Software Development framework:
firstly, the need of a mechanism for defining
modeling languages that are not ambiguous, so that
a transformation tool can read, write, and understand
the models. Therefore, in the Model Driven Software
Development, models are defined by metamodels.
Secondly, the need of transformation rules that
describe the definition of this transformation and
details of how a model, in a source language, could
be transformed into a model in a target language,
using the source and target metamodels to define the
transformation, so that they are defined in general
and not for a particular application.

In our proposal, the approach used is the Model
Driven Software Development, in particular, we
create Domain-Specific Models (DSM) using a
focused and specific language for each one of
them (DSL). In this case, we do not use CWM
but simpler metamodels, instances of MOF, for
Data Models, the Multidimensional Model and the
Relational Model. In addition, we designed specific
metamodels for the models used in the process: for
the construction of the Temporal Attribute Graph, we
use the metamodel Temporal Attribute Graph. We
do not use UML or profiles for the design of PIM,
as we believe that the ER model is more expressive
for data modeling.

Next, we will present the metamodels used for the
transformations. All the classes, except those of the
Temporal Attribute Graph, inherit the name attribute
of a superclass Named, not shown in the graphs.

The Data Metamodel
The Data Metamodel (Figure 6) will be used
to make the horizontal transformation (PIM to
PIM), of the basic Data Model to the Temporal
Data Model (Figure 7). This process will allow
to transform the entities, the attributes and the
temporal relationships in the source model, in
temporal entities in the target model and, also,
the relationships fact, in entities.

Temporal Data Metamodel
The Temporal Data metamodel (Figure 7) will be
used together with the Temporal Attribute Graph
metamodel (Figure 8) to make the horizontal

RelationshipEnd
multiplicityMax : Integer

Attribute
name : String
isKey : Boolean
isTemp : Boolean
dataType : String

Entity
name : String
isTemp : Boolean
isFact : Boolean

1
0..*

+entity
1

+relationshipEnd0..*

1..*1

+attribute

1..*1

Relationship
name : String
isFact : Boolean
isTemp : Boolean

2..*

1

+relationshipEnd 2..*
+relationship

1

0..*

0..1

+attribute0..*

0..1

Schema
name : String

1..*+entity 1..*

+schema

0..*

+relationship

0..*+schema

Figure 6.  Data Metamodel.

Neil, De Vincenzi and Pons: Design method for a Historical Data Warehouse, explicit valid time in multidimensional models

227

transformation (PIM to PIM), from the Temporal
Data Model to the Temporal Attribute Graph.

Attribute Graph Metamodel
The Temporal Attribute Graph Metamodel (Figure 8)
will be used, together with the Temporal Data
Metamodel (Figure 7), for horizontal transformation
(PIM to PIM) of the Temporal Data Model adapted
to the Temporal Attribute Graph.

Relational Metamodel
The Relational Metamodel (Figure 10) will be
used, together with the Temporal Multidimensional
Metamodel (Figure 9), in the PIM to PSM

RelationshipEnd
multiplicityMax : Integer

Attribute
name : String
isKey : Boolean
dataType : String

Entity
name : String

1

0..*

+entity
1

+relationshipEnd
0..*

1..*0..1

+attribute

1..*

+entity

0..1

Relationship
name : String

2..*

1

+relationshipEnd 2..*

+relationship

1

0..*

0..1

+attribute0..*

0..1

Schema
name : String

1..*
+entity

1..*

+schema

0..*

+relationship

0..*

+schema

DateAttributeTemporalEntity

11
+initialTime

11

11
+finalTime

11

FactEntity

Figure 7.  Temporal Data Metamodel.

Vertex

Identifier
name : String
dataType : String

Leaf
name : String
isTemp : Boloean
pruned : Boolean
dataType : String

Schema
name : String 0..*0..*

+schema

Node
label : String
isTemp : Boolean

1..*+identifier 1..*

+node

0..*

+leaf

0..*

1
+root

1

0..*

+node

0..*
0..*

0..1

+temporalNode
0..*

+parent

0..1

Figure 8. Temporal Attribute Graph Metamodel.

transformation of the Temporal Multidimensional
Model to the Relational Model.

AUTOMATIC TRANSFORMATIONS

The model transformations are the main component
in the Model Driven Software Development. For
the transformations from model to model we use
ATL [2] that is a hybrid
programming language (imperative and declarative).

The declarative style is recommended, since it allows
the mappings between the source and target model
in a simpler way. ATL imperative constructions
are used to describe mappings that are difficult to
specify in a declarative style.

An ATL transformation is composed of rules that
define how elements in the source model are used
to create and initialize the elements of the target
model. ATL is supported by a tool built on the
Eclipse platform that facilitates the development
of ATL transformations.

For implementing the transformations from model
to text we use MOFScript. This tool assists in the
Model Driven Software Development process by
supporting the source code generation and other
kinds of text generation from the models, such as
documentation generation.

Ingeniare. Revista chilena de ingeniería, vol. 22 Nº 2, 2014

228

Column
name : String
dataType : String

ForeignKey

Key
Table

name : String

0..*
+foreignKey
0..* 1..*

+column

1..*

1

1

+table
1

1

1..*

+key

1..*

Schema
name : String

1..*

+schema

1..*

Figure 10. Relational Metamodel.

MOFScript has few constructions. It is easy to use
and understand, and has a similar style to the scripting
languages. It is a language that is influenced by MOF
QVT, in particular, MOFScript specializes QVT
[14]. For space limitations, the ATL and MOFScript
code of the transformations is not included in this
paper, but can be downloaded from [35].

RELATED WORK

In the last years, there have been several studies
related to the use of the Model Driven Software
Development approach for the design of computer
systems; in particular, proposals were presented
using the Model Driven Architecture (MDA) for
the design of different types of storage structures,

such as Temporal Data Base, Data Warehouse and
Spatial Data Warehouse. In [16] a framework for
the development of a hybrid multidimensional
model by using a conceptual representation that can
automatically derive into logic model was presented.
In [8] an MDA approach for the design of a Spatial
Data Warehouse was presented. In [24] an MDA
approach for the transformation of a temporal data
model to a relational schema was proposed. In
[15] an approach based on model driven reverse
engineering for the development of Data Warehouse
was presented. In [33] the development of an ORDB
in the framework of MDA was presented.

Transformations are defined to generate the
schema of the Data Base (PSM), starting from
the conceptual data schema (PIM) represented by
UML class diagrams. In [29] an extension of the
relational package CWM to represent, at a logical
level, all security and audit requirements captured
during the conceptual modeling phase of the Data
Warehouse was proposed. In [27-28, 30-31], with
similar approaches, a set of MDA transformations
through the QVT standard for transforming a
multidimensional secure conceptual model into
logical secure relational schema was presented. In
[22], in the framework MDA, a set of transformations
to derive into Temporal Multidimensional Model from
a data model with temporal marks was proposed.
They presented a semi-automatic methodology
for generating a relational schema of a Temporal

+strictH
TempHierarchyStrictHierarchy

0..2

+strictH

0..2

0..*0..*

Hierarchy

Schema
name : String

Dimension

0..*

+hier

0..*

+dim

Measure Fact

1
+fact

1

+schema

1..*

+dim

1..*

+fact

0..*

+measure

0..*

+fact

Attribute
name : String
dataType : String

Identifier

Reference

MultidimModelElement
name : String0..* 0..1

+attribute

0..*

+multit

0..1

1..*

+identifier

1..*

+mmelem

Figure 9.  Temporal Multidimensional Metamodel

Neil, De Vincenzi and Pons: Design method for a Historical Data Warehouse, explicit valid time in multidimensional models

229

Data Warehouse from a temporal data model.
In [17] an approach to ensure the correctness
of a conceptual Data Warehouse from the data
sources that fill it was presented. They obtained a
conceptual Multidimensional schema of the Data
Warehouse from the user’s requirements. In [34]
a semi-automatic methodology for the conceptual
design of a Data Warehouse was presented. In [18]
a framework, oriented to MDA, for the development
of a Data Warehouse was presented. The proposed
framework has the complete design of a Data
Warehouse as objective, where they align each
one of the development stages with different points
of view of MDA. In this paper they presented the
MD2A, an approach that applies MDA for the
development of a Data Warehouse; they defined
an MD PIM, an MD PSM and the corresponding
transformations using QVT language. The PIM is
modeled using UML profiles and, the PSM, using
the CWM relational package.

On the other hand, the works related to the design
of data structures using MDA approach presented
by other authors consider the following objectives:
to improve the productivity in the development of
a Data Warehouse, in the MDA framework ([15,
16, 17, 18, 34]); to use the MDA approach in the
design of a Spatial Data Warehouse [8]; to consider
safety issues in the Data Warehouse ([27, 28, 30,
31]) and to implement them in a specific OLAP
tool or, finally, to use the MDA approach for the
development of an ORDB [33]. The approach used
in all cases by the presented works is in the MDA
framework; this involves the use of associated
standards proposed by the OMG (UML and profiles,
OCL, XMI, CWM, and QVT).

Our proposal differs from the referenced works,
mainly in the Multidimensional Model proposed:
the Historical Data Warehouse represents a new
data structure that combines and integrates, in a
single model, a Data Warehouse and a Historical
Data Base.

CONCLUSIONS

The main proposal of the work is the creation of
a model and a method for the automatic design of
a Historical Data Warehouse, that is, a new data
storage structure that combines and integrates a Data
Warehouse and a Historical Data Base, in a single

model. This Temporal Multidimensional Model
includes, besides the main analytical fact, temporal
structures related to the levels of the dimensional
hierarchies that make possible to record the data
and to retrieve information that varies in time. Using
the Model Driven Software Development paradigm,
the Historical Data Warehouse is generated from
a design method that, using a conceptual data
model as source expressed in an ER model and
by successive transformations, allows to obtain a
logical implementation in an RDBMS.

Our proposal differs from other related works in
several aspects. First, the proposed storage structure
(Historical Data Warehouse) is original in relation
to other works, where the main focus is centered
on Data Warehouse, Spatial Data Warehouse and
ORDBs; second, the approach used in this work
is the Model Driven Software Development, in
particular DSM, and our proposal uses DSL.
Unlike the MDA approach, where they promote
the use of OMG standards, we do not use UML
or profiles for the design of PIM. This simplifies
the designer’s work, since he should only learn a
simple notation, with limited elements and focused
on their expertise domain.

In this regard, the applicability of the Model Driven
Software Development paradigm is important to
emphasize that most of the presented papers are
connected with storage structures. Undoubtedly, the
main cause is the relative simplicity for representing
the transformation of static structures, unlike the
dynamic part (the functional aspects) of the computer
systems whose essence is more complex to capture.
Regarding this last point, our proposal considers
aspects related to the behavior, in some way, by
permitting to derive queries on the Data Base.

FUTURE WORK

From the work presented, a range of possible lines
of research is opened that were not considered in
the development of the work but which deserve to
be taken into account in future works. Below, we
will detail, the issues that we have not considered
and whose solution involves a line of research to
develop:

The creation of a DLS for Data Warehouse
transformations. In our work we used the ATL

Ingeniare. Revista chilena de ingeniería, vol. 22 Nº 2, 2014

230

language to define transformations between
the models proposed. ATL is a hybrid model
transformation language that allows both
declarative and imperative constructs to be used
in transformation definitions, that is, it provides
syntactic constructions focused on the definition of
transformations among models. Additionally, these
transformation languages (LT) can accept a higher
degree of specialization, that is, we could define a
domain-specific language for the transformation.
In our case, we could define specific LT Data
Warehouse transformations. To have a specific
language versus a more general language, such as
ATL, would remarkably facilitate the definition
and reuse of transformations.

The consideration of the user’s requirements in the
design of the Historical Data Warehouse. Our work
uses a conceptual data model expressed in an ER
model, as the source model for the transformation
process, which we believe represents the information
requirements of the users, at least in regard to the
transactional application. We have not considered how
to evaluate and capture the information requirements
of the users in multidimensional and temporal aspects
in the Historical Data Warehouse design. Partly,
it is that way because the transformations begin
with the PIM, regardless of the CIM, explicitly.
The transformation from CIM to PIM is not a very
developed area, opening a line of research to be
considered in future works.

The extension of the data model. The temporal data
model used is the ER standard model, which only
includes the basic constructions and, through them,
the capture of the temporal aspects implicitly. We
have not initially considered grade relationships in
our data model > 2 and neither did we extend its
semantic concepts such as generalization, aggregation
and temporal constructions. These aspects deserve
to be evaluated and considered in future extensions
of the data model used.

The temporal integrity restrictions. The model, as it
is planned, does not consider restrictions in regard
to the updates, so the case of temporal overlapping
may exist. The establishment of restrictions regarding
the insertion, deletion and modification of temporal
values should prevent possible inconsistencies in
the Data Base.

The automatic derivation of the ETL process.
Another aspect that we have not considered in our
Historical Data Warehouse design is how to perform
the ETL process. This process is important because
it is responsible for integrating data from different
heterogeneous sources. For the construction of the
conceptual model we start from an ER model that
represents a non-historical Data Base. The extension
to a temporal model does not conceptually imply
greater inconvenience. The load of historical data
does require considering strategies for the fill up of
the Historical Data Warehouse from data coming
from backups stored in different supports and
formats. One line of research to consider is, in the
context of the Model Driven Software Development,
the automatic code generation of ETL processes.

The use of an Object Relational PSM. We have
used the relational model, in particular the standard
SQL92 for the development of PSM. The ORDB
Data Bases (standard SQL2003) presents such
constructions as the abstract data types defined by
the user, which would permit a simpler representation
of the proposed temporal model, allowing to develop
an associated line of research.

REFERENCES

[1]	 R. Agrawal, A. Gupta and S. Sarawagi.
“Modeling multidimensional databases”.
Research Report. IBM Almaden Research
Center. San Jose, California, EE.UU. 1995.

[2]	 D.H. Akehurst, W.G.J. Howells and K.D.
McDonald-Maier. “Kent Model Transformation
Language”. Proc. Model Transformations in
Practice Workshop, part of MoDELS 2005.
Montego Bay, Jamaica. 2005.

[3]	 E.F. Codd, S.B. Codd and C.T. Salley.
“Providing OLAP to user-analysts. An IT
mandate”. Technical Report. E.F. Codd and
Associates. 1993.

[4]	 S. Chaudhuri and U. Dayal. “An overview of
data warehousing and OLAP technology”.
ACM SIGMOD Record. Vol. 26, Issue 1,
pp. 65-74. March, 1997.

[5]	 J. Eder and C. Concilia. “Evolution of
dimension data in temporal data warehouses”.
Technical Report. 2000.

[6]	 J. Eder, C. Concilia and T. Morzy. “A model
for a temporal data warehouse”. Proc. of the

Neil, De Vincenzi and Pons: Design method for a Historical Data Warehouse, explicit valid time in multidimensional models

231

Int. OESSEO 2001 Conference. Rome, Italy.
2001.

[7]	 M. Golfarelli, D. Maio and S. Rizzi.
“Conceptual design of data warehouses from
E/R schemes”. Proceedings 31st Hawaii
International Conference on System Sciences.
Hawaii, USA. 1998.

[8]	 O. Glorio and J. Trujillo. “An MDA
approach for the development of spatial data
warehouses”. DaWaK. Turin, Italy. 2008.

[9]	 C. Hurtado, A. Mendelzon and A. Vaisman.
“Maintaining data cubes under dimension
updates”. Proc. of the 15th Int. Conf. on
Data Engineering. Sydney, Australia. 1999.

[10]	 W.H. Inmon. “Building the Data Warehouse”.
John Willey, pp. 576. 2005.

[11]	 C.S. Jensen. “A consensus glossary of temporal
database concepts”. ACM SIGMOD Record.
Vol. 23, Issue 1, pp. 52-65. March, 1994.

[12]	 A.G. Kleppe, J. Warmer and W. Bast. “MDA
Explained: The model driven architecture:
practice and promise”. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA,
USA. 2003.

[13]	 OMG. “MOF Meta Object Facility
Specification”. OMG Document formal.
URL: http://www.omg.org

[14]	 OMG. “MOF 2.0 Query/View/Transformations
OMG Adopted Specification”. March, 2005.
URL: http://www.omg.org

[15]	 J.N. Mazón, E. Ortega y J. Trujillo. “Ingeniería
inversa dirigida por modelos para el diseño
de almacenes de datos”. En: XII Jornadas
de Ingeniería del Software y Bases de Datos
(JISBD). España. 2007.

[16]	 J.N. Mazon and J. Trujillo. “A hybrid
model driven development framework for
the multidimensional modeling of data
warehouses”. SIGMOD Record. Vol. 38,
Issue 2. June, 2009.

[17]	 J.N. Mazon, J. Trujillo and J. Lechtenbörger.
“A set of QVT relations to assure the
correctness of data warehouses by using
multidimensional normal forms”. ER 2006.
Tucson, USA. 2006.

[18]	 J.N. Mazon, J. Trujillo, M. Serrano and M.
Piattini. “Applying MDA to the development
of data warehouses”. DOLAP 2005. Bremen,
Germany. 2005.

[19]	 E. Malinowski and E. Zimányi. “Hierarchies
in a multidimensional model: from conceptual

modeling to logical representation”. Data &
Knowledge Engineering. Vol. 59, Issue 2,
pp. 348-377. November, 2005.

[20]	 P. Mc Brien, A. Seltveit and B. Wangler.
“An Entity-Relationship model extended to
describe historical information”. CISMOD,
pp. 244-260. Bangalore, India. July, 1992.

[21]	 C. Neil and J. Ale. “A conceptual design
for temporal Data warehouse”. 31º JAIIO.
Simposio Argentino de Ingeniería de
Software. Santa Fe, Argentina. 2002.

[22]	 C. Neil. “Diseño de un almacén de datos
histórico en el marco del desarrollo de
software dirigido por modelos”. Tesis
para optar al grado de Doctor en Ciencias
Informáticas. Universidad Nacional de La
Plata. La Plata, Argentina. 2010.

[23]	 C. Neil, J. Irazábal, M. De Vincenzi and
C. Pons. “Graphical query mechanism
for historical DW within MDD”. XXIX
Conferencia Internacional de la Sociedad
Chilena de Ciencia de la Computación. IEEE
Press. Curicó, Chile. 2010

[24]	 C. Neil y C. Pons. “Aplicando QVT
en la transformación de un modelo de
datos temporal”. Jornadas Chilenas de
Computación. Punta Arenas, Chile. 2008.

[25]	 C. Pons, R. Giandini y G. Pérez. “Desarrollo
de software dirigido por modelos. conceptos
teóricos y su aplicación práctica”. McGraw-
Hill Education, p. 300. Buenos Aires,
Argentina. 2009.

[26]	 O. Romero and A. Abelló. “MDBE: automatic
multidimensional modeling”. ER 2008.
California, USA. 2008.

[27]	 E. Soler, J. Trujillo, E. Fernández-Medina
and M. Piattini. “A set of QVT relations
to transform PIM to PSM in the design of
secure data warehouses”. ARES 2007. Viena,
Austria. 2007.

[28]	 E. Soler, J. Trujillo, E. Fernández-Medina
and M. Piattini. “Designing secure data
warehouses by using MDA and QVT”.
Journal of Universal Computer Science.
Vol. 15, Issue 8, pp. 1607-164. 2009.

[29]	 E. Soler, J. Trujillo, E. Fernández-Medina and
M. Piattini. “Una extensión del metamodelo
relacional de CWM para representar
almacenes de datos seguros a nivel lógico”.
JISBD 2007. Zaragoza, España. 2007.

[30]	 E. Soler, J. Trujillo, E. Fernández-Medina y
M. Piattini. “Aplicación de QVT al desarrollo

Ingeniare. Revista chilena de ingeniería, vol. 22 Nº 2, 2014

232

de almacenes de datos seguros: un caso
de estudio”. IDEAS 2007. Isla Margarita,
Venezuela. 2007.

[31]	 E. Soler, J. Trujillo, E. Fernández-Medina y
M. Piattini. “Un conjunto de transformaciones
QVT para el modelado de almacenes de datos
seguros”. JISBD 2007. Zaragoza, España.
2007.

[32]	 N. Tryfona, F. Busborg and J.G.B.
Christiansen. “starER: a conceptual model
for data warehouse design”. In: ACM Second
International Workshop on Data Warehousing
and OLAP (DOLAP’99). Missouri, USA.
November, 1999.

[33]	 J.M. Vara, B. Vela, J.M Cavero y E. Marcos.
“Transformación de modelos para el desarrollo
de base de datos objeto-relacionales”. IEEE
Latin American Transactions. Vol. 5 N° 4.
Julio 2007.

[34]	 L. Zepeda y M. Celma. “Aplicando MDA al
diseño conceptual de almacenes de datos”.
9º Workshop Iberoamericano de Ingeniería
de Requisitos y Ambientes de Software
(IDEAS’06). Mar del Plata, Argentina. 2006.

[35]	 C. Neil. “Diseño de un Almacén de Datos
Histórico en el Marco del Desarrollo de
Software Dirigido por Modelos”. 19 de
diciembre de 2013. URL: http://www.lifia.
info.unlp.edu.ar/eclipse/pages/tesis_neil.htm

