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RESUMEN

Presentamos una nueva estructura de almacenamiento que denominamos DW Histórico y que contiene, 
explícitamente, el tiempo válido. Nuestra propuesta combina, en un modelo integrado, una Base de 
Datos Histórica y un DW. El objetivo del modelo propuesto es resolver las limitaciones temporales 
de las estructuras multidimensionales tradicionales. Aunque el DW Temporal considera, además de la 
dimensión temporal, otros aspectos vinculados con el tiempo, este modelo solo contempla los cambios 
que se producen en las dimensiones y jerarquías. Por consiguiente, en virtud de contemplar la necesidad 
de registrar valores que permitan evaluar tendencias, variaciones, máximos y mínimos, un problema a 
resolver es cómo registrar, en el diseño de la estructura multidimensional, la variación temporal de los 
valores de entidades, atributos e interrelaciones, ya que, si bien sabemos que los datos necesarios están 
almacenados, los mecanismos de búsqueda temporal serían complejos. El diseño del DW Histórico está 
enmarcado en el enfoque del Desarrollo de Software Dirigido por Modelos, una estrategia que permite, 
mediante sucesivas transformaciones automáticas, obtener una implementación del modelo multidimensional 
en un Sistema Administrador de Base de Datos Relacionales (SABDR).

Palabras clave: Método de diseño, desarrollo de software dirigido por modelos, data warehouse, base de 
datos histórica, tiempo válido.

ABSTRACT 

We present a new storage structure that contains the explicit valid time called Historical DW. This proposal 
combines a Historical Data Base and a DW in one integrated model. The objective of this model is to 
solve the temporal limitations of the traditional multidimensional structures. Although the Temporal DW 
considers, besides the temporal dimension, other aspects related to time, this model only takes into account 
the changes that occur in the DW schema, both in dimensions and in hierarchies. Therefore, considering 
the need for registering values that allow to evaluate trends, variations, maximum and minimum values, 
a problem to be solved is how to shape the values of entities, attributes or relationships that may vary 
in time, in the design of the structure. The fact that the needed data was stored is already known, but 
the temporal search mechanisms would be complex. The Historical DW design is framed in the MDD 
approach, a strategy that allows, through successive automatic transformations, to obtain one of the 
implementations of the model in a Relational Data Base Management System (RDBMS).

Keywords: Design method, model driven software development, data warehouse, historical data base, 
valid time.
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INTRODUCTION

A Data Warehouse is a “subject-oriented, integrated, 
nonvolatile, and time-variant collection of data 
in support of management’s decisions” [10]. A 
distinctive characteristic of the Data Warehouse is 
that time is one of the dimensions for the analysis [4, 
7], but this refers to the moment when a transaction 
was made, therefore, it does not specify how or 
when the values of the entities, attributes and 
relationships associated with these transactions 
have varied through time. Although the Temporal 
Data Warehouse considers, besides the temporal 
dimension, other aspects related to time [5, 6, 9], 
this model considers only the changes that occur in 
the Data Warehouse schema, both in dimensions and 
in hierarchies. Therefore, a problem to be solved in 
this type of multidimensional structure, considering 
the need for registering values that allow to evaluate 
trends, variations, maximum and minimum values, 
is how we shape the values of entities, attributes or 
relationships that may vary in time in the design of 
the multidimensional structure; since, although the 
needed data of information was stored, the temporal 
search mechanisms would be complex [21].

Several methods have been proposed that allow 
to derive the conceptual multidimensional schema 
from data sources of the organization and/or of the 
user’s requirements (see [7, 32]); most of them 
must be done manually [26]. A solution to this 
problem is proposed by Model Driven Software 
Development, this approach has become a new 
paradigm of software development that promises 
improvements in the software construction based 
on a model-driven process and supported by 
powerful tools. This new paradigm aims to improve 
productivity and software quality generated by 
reducing the semantic leap between the problem 
domain and the solution [25].

The proposed design method consists in successive 
automatic and semiautomatic transformations of 
models, that begin with an ER model and that finally 
allow to obtain a temporal multidimensional model 
expressed as a set of tables in the relational model. 
The complete proposal includes the automatic 
creation of a Graphic Query Interface derived from 
the Historical Data Warehouse that, by means of 
marks on a graph, automatically creates temporal 
and decision-making SQL query statements, [23].

The work is complemented with the creation of a 
prototype based on ECLIPSE technology, which 
implements the design method of Historical Data 
Warehouse, the Graphic Query Interface and the 
automatic execution of SQL statements [35]. 

To corroborate the proposal empirically, an evaluation 
of this work was carried out by means of a qualitative 
research, through a controlled experiment using 
questionnaires with open-type questions. The 
research was conducted with students from the 
Master’s Degree in Information Technology from de 
School of Information Technology of the Universidad 
Abierta Interamericana. As a first conclusion, from 
the assessment performance, we consider that the 
submitted proposal constitutes a valid alternative 
in the design of multidimensional structures, in the 
proposal of the design method, and in the storage 
structure and in the graphical query interface. For 
more details see [22].

The paper is organized in the following way: firstly, 
we present the preliminary concepts; secondly, we 
describe the main characteristics of the Historical 
Data Warehouse; thirdly, we detail the design method 
of the Historical Data Warehouse; fourthly, we 
describe the transformations in informal language; 
in the fifth place, we present the metamodels used in 
the transformations; then, we present the automatic 
transformations; after that, we present the related 
work; following this, we describe the conclusion 
and, finally, the future works.

PRELIMINARY CONCEPTS

In this section we will present basic concepts of 
Data Warehouse, Temporal Data Base and Model 
Driven Software Development, which allow to 
support the proposal.

Data Warehouse 
The companies use the operational data accumulated 
over the years and stored in structures ad hoc called 
Data Warehouse to help understand and manage their 
activities. While an Operational Data Base maintains 
current data, the Data Warehouse maintains historical 
data of the company; as a result, the underlying data 
structures, in order to grow constantly over time 
require a high storage capacity. Codd [3] introduced 
the term On Line Analytical Processing (OLAP), in 
1993, to characterize the summary requirements, 
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consolidation, vision and synthesis of data through 
multiple dimensions. The multidimensional model 
is the basis of the Data Warehouse. In this model the 
information is structured in facts and dimensions; 
a fact is a topic of interest for the company, it is 
described by means of fact attributes, and these are 
contained in cells or points in the data cube. A data 
cube is a multidimensional representation of data 
that can be seen from different points of view; a 
data cube is formed by dimensions, which determine 
the granularity for the representation of facts and 
hierarchies that show how instances of facts can 
be grouped and selected for the decision-making 
processes [1].

Historical Data Base
In an Operational Data Base, the information 
becomes effective when it is established and it is 
considered valid until a new update modifies it; 
therefore there is no distinction between the time 
of registration of that information in the Data Base 
and the period during which the specific values of 
the facts related to this information are valid in the 
universe of discourse. Thus, the Data Base represents 
only the current state and not the history of the 
reality facts that it was modeling. Furthermore, a 
Temporal Data Base supports some aspect of time, 
without taking into account user-defined time [11].

In a Temporal Data Base, an instant is a time point 
on an underlying time axis; a time interval is the 
time elapsed betw[een two instants; a timestamp 
is a temporal mark associated with an object or 
attribute of the Data Base. The valid time of a fact 
is the time when the fact is true in the modeled 
reality. A fact may have any number of instants and 
time intervals associated, these single instants and 
intervals are important special cases. Valid times 
are usually supplied by the user [11]. In practice, 
the valid time is the most important concept since 
it models the veracity of the facts recorded in the 
universe of discourse, which is the main objective 
of the information systems [20].

A Data Base fact is stored in a Data Base at some 
point in time, and after it is stored, it is present 
until logically deleted. The transaction time of a 
Data Base fact is the time when the fact is present 
in the Data Base and may be retrieved. Transaction 
time values cannot be later modified. Also, as it is 

impossible to change the past, transaction times 
cannot be changed [11]. 

The different types of Data Bases are connected, in 
its definition, to the concepts presented above. A 
Data Base that models only the valid time is called 
Historical Data Base, a Data Base that models only 
the transaction time, is called RollBack Data Base 
and the one that models both the valid time and 
transaction time, is called BiTemporal Data Base [11].

Model Driven Architecture
The Model Driven Software Development proposes 
architecture for the development of computer 
systems whose goal is to provide a solution for 
easily adapting the system to changes on business 
and technology. This approach represents a new 
paradigm where models of the system, at different 
levels of abstraction, are used to guide the entire 
development process. Models are implementation-
independent and they are automatically transformed 
to executable code. 

This new paradigm aims to improve productivity 
and to generate software quality by reducing the 
semantic leap between the problem domain and 
the solution [25]. The key underlying idea is 
that, if working with models, important benefits 
in interoperability, productivity, portability, 
maintenance and documentation will be obtained 
[12]. We can divide, briefly, the Model Driven 
Software Development process into three phases; 
in the first one, a Platform Independent Model 
(PIM) is built, this is a high-level model of the 
system being developed independently of any 
technology; then, the previous model is converted 
into one or more Platform Specific Models (PSM), 
these models are at a lower level than the PIM and 
describe the system in accordance with a particular 
implementation technology; and finally, the last one 
generates an Implementation Model (IM), this is, a 
source code from each PSM. The division between 
PIM and PSM is linked to the concept of platform, 
which, by not being specifically defined, it does 
not establish the dividing line between PIM and 
PSM. Model Driven Software Development also 
presents a Computation Independent Model (CIM) 
that describes the system within its environment and 
shows what is expected from it without showing 
any details of how it will be built. 
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The main benefit of the Model Driven Software 
Development approach is that once every PIM has 
been developed, we can derive automatically the 
rest of the models by applying the corresponding 
transformations in vertical form.

HISTORICAL DATA WAREHOUSE

The Historical Data Warehouse is a new structure 
of data storage that combines and integrates a Data 
Warehouse and a Historical Data Base in a single 
model. This model includes, besides the main 
analytical fact, temporal structures related to the 
levels of dimensional hierarchies that allow to record 
data and retrieve information that varies in time.

Conceptual Model
The conceptual model of the Historical Data 
Warehouse is composed of a fact and a set of 
dimensions; the latter are represented by simple 
or multiple hierarchical levels (temporal and not 
temporal) [22]. 

To express the valid time, we will use the notation 
[IT, FT) as the representation of the validity interval, 
where the attribute IT (Initial Time) will be the first 
instant and the attribute FT (Final Time) the last 
instant of the described interval. On the other hand, 
we will consider the interval close/open that will 
include the instant IT and exclude the instant FT. 

The main fact may have one or more fact attributes, as 
well as attributes that are not interpreted as measures 
but that will be able to be used to identify a particular 
instance of the fact (degenerated dimensions). 
Schematically (Figure 1), the model is composed 
of a fact (F) that contains a set of attributes (idi0, 
i= 1, 2,…, n) that, individually, refers to each of the 

lowest levels of granularity of the dimensions (ni0, 
i= 1, 2,…, m) and, as a whole, this set identifies 
a particular instance of the fact; also the fact may 
contain one or more measures (mi).

Each dimension ni consists of hierarchical levels 
(ni0, ni1, ni2,… nij, i= 1, 2,…, n; j= 1, 2,…, q); all 
the levels will have an identifier attribute (idni) 
plus an attribute that refers to the greater level of 
granularity (idni+1), except for the last level of the 
hierarchy. Moreover they may have descriptive 
attributes (non-dimension attributes). The hierarchy 
levels (e-tempi, a-tempi, r-tempi) represent entities, 
attributes, and temporal relationships respectively 
and they constitute non strict hierarchies. The 
hierarchy level that symbolizes a temporal entity 
(e-tempi) has a composed attribute that identifies it, 
formed by the identifier of the level that represents 
the entity (this identifier will also refer to the entity) 
plus the attribute called IT ({idni, IT}); it also has 
an attribute denominated FT. The attributes IT 
(Initial Time) and FT (Final Time) will determine 
both the initial and final instances of the temporal 
interval considered respectively. The hierarchy level 
that represents a temporal attribute (a-tempi) has a 
compound attribute that identifies it ({idni, IT}), 
consisting of the level identifier that represents the 
entity (this identifier will also refer to the entity) 
plus the attribute called IT; the temporal interval also 
has two attributes denominated FT and value. The 
hierarchy level that represents a temporal relationship 
(r-tempi) has a compound attribute that identifies 
it ({idni, TI}), formed by the identifier of one of 
the levels that it links (the identifier will also refer 
to the level) plus the attribute denominated IT; the 
temporal relationship also has an attribute that will 
refer to the other level that links (idni+1), plus an 
attribute called FT. In the temporal hierarchies, the 
attributes IT and FT represent the extreme values of 
the temporal close-open interval [IT, FT). 

Example of a Historical DW
In Figure 5, we showed an example of a Historical 
Data Warehouse; where both typical queries of a 
Data Warehouse and queries of a Historical Data 
Base can be made. 

For example, the following are typical queries: At 
what intervals was a particular client active? On 
which dates did it change and which was the price 
of a particular product? Which was the price of a Figure 1. 	 Temporal Multidimensional Model.
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particular product on a certain date? On what dates 
and where did a particular client move? Which was 
the location of a particular client on a certain date? 

These are specific queries of a Historical Data 
Base and could not be performed in a common 
Data Warehouse. These queries (and the ones of 
decision-making) can be performed in our model 
using a Graphical Query interface [23].

Design Method for a Historical DW
The transformation method that begins with an ER 
model that describes the source data schema of 
the Operational Data Base, until the obtaining of 
a Historical Data Warehouse (implemented in an 
RDBMS) proposes a number of steps, described 
informally and detailed below. The transformation 
method will begin with an ER model and, by means 
of successive transformations, will allow to obtain 
a set of tables in a Relational Model expressed in 
SQL sentences. 

Below, we will detail how the informal transformation 
process is; we will show, step by step, each of the 
transformations in detail. Initially, starting with a 
Data Model (Figure 2), we will obtain a Temporal 
Data Model (Figure 3). The Temporal Data Model 
includes the transformation from the relationship 
fact to an entity fact; then, from the previous model 
we create a Temporal Attribute Graph (Figure 4); 
afterwards from this one we will obtain a Historical 
Data Warehouse (Figure 5); from this last one we 
will model a Relational Model and, finally, we 
will obtain SQL sentences for its implementation 
in an RDBMS. 

To explain the method, we will use and develop an 
example that shows the different transformations. Let’s 
present the example: “The Company manufactures 
and centralizes business operations in Buenos 
Aires, but its clients are geographically distributed 
throughout the country. It carries out product sales 
from customers’ orders that are located in different 
provinces, records transactions performed, the dates 
and quantities sold”.

INFORMAL TRANSFORMATIONS

From Data Model to Temporal Data Model 
Below we will detail how to transform the Data Model 
(Figure 2) to a Temporal Data Model (Figure 3).

A temporal entity in the source model will be 
represented, in the target model, by means of a 
temporal (weak) entity associated with the (ex) 
temporal (regular) entity. The new entity will carry 
the same name as the regular entity and will end in 
“-T”. The temporal entity will contain an attribute 
called FT and a unique identifier (compound) formed 
by the identifier of the regular entity plus an attribute 
called IT; the close-open interval [IT, FT), will 
represent, now, the lifetime of the temporal entity. 
The relationship between these two entities will be 
marked with a “T”, the multiplicities of the role of 
the weak entity will be (1, 1). The multiplicity of 
the role of the regular entity will be (1, N).

Figure 2.	 Data Model.

Figure 3. 	 Transformed Data Model.

Figure 4. 	 Temporal Attribute Graph.
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A temporal attribute in the source model will be 
transformed, in the target model, in a temporal (weak) 
entity associated with the entity that owns the attribute. 
The name of the entity will be the same as the name 
of the temporal attribute and it will end in “-T”. The 
temporal attribute will have as descriptive attributes, 
the attribute denominated FT and an attribute that 
will have the same name and domain as the attribute 
transformed in temporal in the source model. The 
unique identifier (compound) of the temporal entity 
will consist in the attribute called IT plus the identifier 
of the regular entity. The close-open interval [IT, 
FT), will represent the valid time of the temporal 
attribute. The multiplicity of the role of the temporal 
entity will be (1, 1); the multiplicity of the role of 
the regular entity will be (1, N). The attribute that 
was transformed to temporal will disappear as such 
in the regular entity of the new model. 

A temporal relationship, in the source model, will 
transform into a temporal entity (weak) linked to 
one of the entities that form the relationship in the 
target model. The name of the new entity will be 
established as a combination of the name of the 
elected regular entity and will end in “-T”, the 
multiplicities of the role of the related entities will be 
(1, N), the multiplicities of the role of the temporal 
entity will be (1, 1). The new temporal entity will 
have as descriptive attribute, the attribute denominated 
FT plus the attributes that the relationship will 
have in the ER source model. The unique identifier 
(compound) of the temporal entity will consist in the 
attribute called IT plus the identifier attribute of the 
entity that gave the name (it will represent a weak 
entity of that one). The relationship that became 

temporal will remain as non-temporal to allow, in the 
subsequent transformation processes, to be source 
of a possible level of grouping in the dimension. All 
the entities and non-temporal relationships, in the 
source model, will remain without modifications 
in the target model. All the non-temporal attributes 
(both entities and relationships), in the source model, 
will stay in the target model, unlike the attributes 
transformed in temporal attributes.

The fact (if represented by a relationship) in the 
source model, will become an entity related to the 
two entities that are part of the relationship in the 
target model. The name of the entity will be the 
same as the one of the relationship, the multiplicity 
of the role of the linked entities will be (1, N), the 
multiplicities of the role of the transformed entity 
will be (1, 1). The fact will have the attributes of 
the relationship (if any) as descriptive attributes 
and the union of the identifier attributes related to 
the relationship as a unique identifier.

From Temporal Data Model to Temporal 
Attribute Graph 
As an intermediate step in the design of the Historical 
Data Warehouse, a modified Temporal Attribute 
Graph [7] will be built, from the Temporal Data 
Model (Figure 3), to be used, later, as a source 
model for the construction of the Historical Data 
Warehouse.
 
For the construction of the Temporal Attribute 
Graph (Figure 4), the main fact, in the Temporal 
Data Model, will be identified, first, as a concept 
of primary interest for the decision-making process 
in the Historical Data Warehouse. The fact will 
correspond to events that occur dynamically in the 
reality and will be represented, in the adapted model, 
by an entity. The main fact will be composed of 
vertexes, each one will represent an attribute, that 
may be simple or compound and that will belong 
to the source model.

We will detail the characteristics of the graph: the 
root of the graph will correspond to the identifier 
of the fact in the model. For each non-temporal 
vertex v, its corresponding associated attributes will 
determine functionally to all attributes that apply 
to the descendants of v. Each vertex v labeled with 
a “T” will correspond to a temporal vertex, this 
in turn, can be “terminal” or “non-terminal”, and 

Figure 5. 	 Historical Data Warehouse.
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the first one will be derived from an attribute or a 
temporal entity in the model whereas the second 
one will be derived, from a temporal relationship. 
The vertexes “Terminal” do not have descendant 
vertexes whose attributes are identifiers. The vertexes 
“non-Terminal” has descendant vertexes whose 
attributes are identifiers. 

Construction of a Temporal Attribute Graph
Given an identifier (E) that indicates a set of 
attributes that identify the entity E in the source 
model, the Temporal Attribute Graph will be able 
to be constructed automatically by applying the 
following recursive function [22].

Function translate (E: Entity): Vertex
{ 
	 v = newVertex(E);
// newVertex(E) creates a new vertex, containing 
// the name and the identifier of the object E 
	 for each attribute a ∈ E  a ∉ identifier(E) do 
	 addChild (v, newVertex(a)); 
//adding a child “a” to the vertex v
	 for each entity G connected to E 
	 by relationship Rmult-max(E,R)=1 or 
	 (R is temporal and E is not temporal) do
//are considered temporal entities
//and infinite loops are avoid 
	 {for each attribute b ∈ R do addChild (v, 
	 translate(G)); }
	 return(v) 
}

From Temporal Attribute Graph to 
Multidimensional Model 
The transformation process of the Temporal Attribute 
Graph to the Temporal Multidimensional Model 
(Figure 1), implies the choice of which vertexes 
of the graph will be considered measures in the 
fact and which dimensions or levels of hierarchies 
(temporal or not). All of them depend on the 
designer’s decisions. Unlike the choice of the fact, 
that will directly derive from the root of the graph. 
The identifier attributes of the nodes in the graph 
will be preserved in the Temporal Multidimensional 
Model for the subsequent transformation to the 
Relational Model. The concepts of root, leaf, child 
and parent were taken from [19].

The general approach that we will use in the 
transformation is as follows: The fact of the graph 

in the Temporal Attribute Graph will correspond to 
the fact in the Temporal Multidimensional Model; 
its name will be the same as the one of the root. 
The identifier attributes in the root node will be 
identifier attributes in the fact.

All the vertexes linked to the root in the Temporal 
Attribute Graph, which are neither identifiers nor 
attributes that denote temporal aspects (the latter will 
be transformed in leaves of the temporal hierarchy 
level) will correspond to measures. A fact may lack 
measures.

The leaf levels in the hierarchy should be chosen 
in the Temporal Attribute Graph between vertexes 
children of the root. Their choice will be crucial for 
the design of the Historical Data Warehouse since 
they will determine the lowest level of granularity of 
the instances of the fact. In the Temporal Attribute 
Graph, the vertexes linked to the fact, that will not 
be identifiers, will be the leaves in the Temporal 
Multidimensional Model; the vertexes associated 
with them, which will not be identifiers, will be non 
dimension attributes, the name of the vertex will 
be the same as the one of the leaf. The multiplicity 
of the role fact will be (1, N), the multiplicity of 
the role leaf will be (1, 1). The leaf levels in the 
hierarchy are linked to the main fact; therefore, each 
one of the attribute identifiers of the fact will be a 
reference to each one of the leaf hierarchy levels, 
so as to establish a “many-to-1” between the fact 
and leaf levels. 

The fact should have an associated vertex that denotes 
temporal aspects. It will become leaf temporal of the 
time dimension in the Temporal Multidimensional 
Model, if this is not the case, because there is not 
an attribute of these characteristics in the Temporal 
ER model, the leaf temporal will be directly forced 
in the Temporal Multidimensional Model and the 
temporal dimension identifier will be added to the 
fact identifier. The multiplicity of the role fact will 
be (1, N), the multiplicity of the temporal role leaf 
will be (1, 1).

The vertexes linked to the adjacent nodes to the 
root, in the Temporal Attribute Graph, which are 
identifiers, will be transformed in parent levels of 
the hierarchy into the Temporal Multidimensional 
Model. The name of the parent level will be the 
same as the one of the vertex and its identifier will 
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be the same as the identifier of the node, all the 
vertexes linked to that level, which are identifiers, 
will also be linked to parent levels. The vertexes 
that are not identifiers will be level attributes. All the 
child levels in the hierarchy will have an attribute 
that will make reference at the parent level. In all 
the levels of the hierarchy, the multiplicity of role 
of the parent will be (1, 1), the multiplicity of child 
role will be (1, N).

The temporal vertexes (marked with “T”), in 
the Temporal Attribute Graph, linked to the 
vertexes transformed into levels of the hierarchy 
in the Temporal Multidimensional Model will be 
transformed in temporal levels, the level name will 
be the same as the one of the vertex and the identifier 
will be the same as the identifier of the node. If the 
vertex was “Terminal”, all the linked vertexes, will 
be leaves and, therefore, will not be identifiers, they 
will be attributes of the temporal hierarchy in the 
Temporal Multidimensional Model. Besides, the 
attribute that is not part of the temporal interval, 
will make reference to the linked hierarchy level. If 
the vertex was “non-Terminal”, it would be linked 
to the two non-temporal hierarchies described in 
the graph; therefore, the temporal level will have 
references to these two levels. All the vertexes linked 
to the temporal nodes that are not identifiers, will 
be temporal vertex attributes.

From Temporal Multidimensional Model to 
Relational Model
The next step in the transformation is the creation of 
a Relational Model. Therefore, from the Temporal 
Multidimensional Model we will obtain a set of 
relational data structures by applying the following 
transformation rules. The transformation process 
will be detailed below.

The representation of the fact in the Temporal 
Multidimensional Model, will be transformed into 
a table in the Relational Model; the measures will 
be the columns of the table; the primary key will 
be composed of a set of the identifier attributes of 
the leaf levels; the attributes forming the primary 
key will also be foreign keys that will refer to each 
one of the resulting tables from the transformation 
of leaf levels associated to the fact.

The leaf levels will become tables in the Relational 
Model; the attributes will be columns of the table, 

the primary key will be composed of a group of the 
identifier attributes of each level; in addition, each 
table leaf will have a foreign key that will refer to 
each one of the tables that form the hierarchy levels.

The levels in the hierarchies in the Temporal 
Multidimensional Model will become tables in the 
Relational Model; the level attributes will be columns 
of the table; the primary key will be composed by 
the group of the identifier attributes of the level; 
also, each table child will have a foreign key that 
will refer to each one of the linked tables parent.

The temporal hierarchy levels in the Temporal 
Multidimensional Model will become tables in the 
Relational Model. If this becomes from a temporal 
entity, it will have the FT as an attribute; the primary 
key will be composed of the union of the primary 
key of the related hierarchy table (in addition, it will 
be the foreign key that will refer to this hierarchy 
table) plus IT attribute. If the temporal hierarchy is 
derived from a temporal attribute, it will have the 
attribute FT plus the attribute that is necessary to 
conserve temporarily as attributes; the primary key 
will be composed of the union of the primary key 
of the related hierarchy table (in addition, it will be 
the foreign key that will refer to this hierarchy table) 
plus the attribute IT. If the temporal hierarchy level 
comes from a temporal relationship, it will have as 
an attribute the FT and the attribute that represents 
the primary key of one of the related hierarchy tables 
(also, it will be the foreign key that will refer to the 
hierarchy table); the primary key will be composed 
of the union of the primary key of the other related 
hierarchy table (in addition, it will be the foreign 
key that will refer to this hierarchy table) plus the 
attribute IT. 

From Relational Model to Tables 
The transformation of the Relational Model to the 
Data Model expressed in SQL sentences is immediate. 
Each attribute has a data type, which will have to be 
transformed (using a defined conversion table) to 
existing SQL data types. Below, the Pseudotables 
from the Relational Model transformed in the 
previous section are shown:

SALE(productID(PRODUCT), 
customerID(CUSTOMER), date, quantity, price)
PRODUCT(productID, …)
CUSTOMER(customerID,…)
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CUSTOMER-T({customerID (CUSTOMER), 
IT}, FT)
TOWN(townID,…)
PRICE-T(productID(PRODUCT), IT, FT, price)
TOWN-T({CUSTOMER(CUSTOMER-T), IT}, 
FT, townID(TOWN)) 

METAMODELS

A metamodel is a mechanism that allows to define 
modeling languages formally. Therefore, a metamodel 
of a language (graphical or textual) is a precise 
definition of its elements by using concepts and 
rules of a certain meta-language needed to describe 
models in that language.

The Meta Object Facility (MOF) [13] defines a 
common and abstract language to define modeling 
languages and the form to access and exchange 
models expressed in these languages. There are two 
fundamental reasons for using metamodels in the 
Model Driven Software Development framework: 
firstly, the need of a mechanism for defining 
modeling languages that are not ambiguous, so that 
a transformation tool can read, write, and understand 
the models. Therefore, in the Model Driven Software 
Development, models are defined by metamodels. 
Secondly, the need of transformation rules that 
describe the definition of this transformation and 
details of how a model, in a source language, could 
be transformed into a model in a target language, 
using the source and target metamodels to define the 
transformation, so that they are defined in general 
and not for a particular application.

In our proposal, the approach used is the Model 
Driven Software Development, in particular, we 
create Domain-Specific Models (DSM) using a 
focused and specific language for each one of 
them (DSL). In this case, we do not use CWM 
but simpler metamodels, instances of MOF, for 
Data Models, the Multidimensional Model and the 
Relational Model. In addition, we designed specific 
metamodels for the models used in the process: for 
the construction of the Temporal Attribute Graph, we 
use the metamodel Temporal Attribute Graph. We 
do not use UML or profiles for the design of PIM, 
as we believe that the ER model is more expressive 
for data modeling.

Next, we will present the metamodels used for the 
transformations. All the classes, except those of the 
Temporal Attribute Graph, inherit the name attribute 
of a superclass Named, not shown in the graphs.

The Data Metamodel
The Data Metamodel (Figure  6) will be used 
to make the horizontal transformation (PIM to 
PIM), of the basic Data Model to the Temporal 
Data Model (Figure 7). This process will allow 
to transform the entities, the attributes and the 
temporal relationships in the source model, in 
temporal entities in the target model and, also, 
the relationships fact, in entities.

Temporal Data Metamodel
The Temporal Data metamodel (Figure 7) will be 
used together with the Temporal Attribute Graph 
metamodel (Figure  8) to make the horizontal 
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Figure 6.  Data Metamodel.
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transformation (PIM to PIM), from the Temporal 
Data Model to the Temporal Attribute Graph.

Attribute Graph Metamodel
The Temporal Attribute Graph Metamodel (Figure 8) 
will be used, together with the Temporal Data 
Metamodel (Figure 7), for horizontal transformation 
(PIM to PIM) of the Temporal Data Model adapted 
to the Temporal Attribute Graph. 

Relational Metamodel
The Relational Metamodel (Figure 10) will be 
used, together with the Temporal Multidimensional 
Metamodel (Figure  9), in the PIM to PSM 
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Figure 7.  Temporal Data Metamodel.
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Figure 8. Temporal Attribute Graph Metamodel.

transformation of the Temporal Multidimensional 
Model to the Relational Model.

AUTOMATIC TRANSFORMATIONS

The model transformations are the main component 
in the Model Driven Software Development. For 
the transformations from model to model we use 
ATL [2] that is a hybrid 
programming language (imperative and declarative).

The declarative style is recommended, since it allows 
the mappings between the source and target model 
in a simpler way. ATL imperative constructions 
are used to describe mappings that are difficult to 
specify in a declarative style.

An ATL transformation is composed of rules that 
define how elements in the source model are used 
to create and initialize the elements of the target 
model. ATL is supported by a tool built on the 
Eclipse platform that facilitates the development 
of ATL transformations. 

For implementing the transformations from model 
to text we use MOFScript. This tool assists in the 
Model Driven Software Development process by 
supporting the source code generation and other 
kinds of text generation from the models, such as 
documentation generation.
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Figure 10. Relational Metamodel.

MOFScript has few constructions. It is easy to use 
and understand, and has a similar style to the scripting 
languages. It is a language that is influenced by MOF 
QVT, in particular, MOFScript specializes QVT 
[14]. For space limitations, the ATL and MOFScript 
code of the transformations is not included in this 
paper, but can be downloaded from [35].

RELATED WORK

In the last years, there have been several studies 
related to the use of the Model Driven Software 
Development approach for the design of computer 
systems; in particular, proposals were presented 
using the Model Driven Architecture (MDA) for 
the design of different types of storage structures, 

such as Temporal Data Base, Data Warehouse and 
Spatial Data Warehouse. In [16] a framework for 
the development of a hybrid multidimensional 
model by using a conceptual representation that can 
automatically derive into logic model was presented. 
In [8] an MDA approach for the design of a Spatial 
Data Warehouse was presented. In [24] an MDA 
approach for the transformation of a temporal data 
model to a relational schema was proposed. In 
[15] an approach based on model driven reverse 
engineering for the development of Data Warehouse 
was presented. In [33] the development of an ORDB 
in the framework of MDA was presented.

Transformations are defined to generate the 
schema of the Data Base (PSM), starting from 
the conceptual data schema (PIM) represented by 
UML class diagrams. In [29] an extension of the 
relational package CWM to represent, at a logical 
level, all security and audit requirements captured 
during the conceptual modeling phase of the Data 
Warehouse was proposed. In [27-28, 30-31], with 
similar approaches, a set of MDA transformations 
through the QVT standard for transforming a 
multidimensional secure conceptual model into 
logical secure relational schema was presented. In 
[22], in the framework MDA, a set of transformations 
to derive into Temporal Multidimensional Model from 
a data model with temporal marks was proposed. 
They presented a semi-automatic methodology 
for generating a relational schema of a Temporal 
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Data Warehouse from a temporal data model. 
In [17] an approach to ensure the correctness 
of a conceptual Data Warehouse from the data 
sources that fill it was presented. They obtained a 
conceptual Multidimensional schema of the Data 
Warehouse from the user’s requirements. In [34] 
a semi-automatic methodology for the conceptual 
design of a Data Warehouse was presented. In [18] 
a framework, oriented to MDA, for the development 
of a Data Warehouse was presented. The proposed 
framework has the complete design of a Data 
Warehouse as objective, where they align each 
one of the development stages with different points 
of view of MDA. In this paper they presented the 
MD2A, an approach that applies MDA for the 
development of a Data Warehouse; they defined 
an MD PIM, an MD PSM and the corresponding 
transformations using QVT language. The PIM is 
modeled using UML profiles and, the PSM, using 
the CWM relational package.

On the other hand, the works related to the design 
of data structures using MDA approach presented 
by other authors consider the following objectives: 
to improve the productivity in the development of 
a Data Warehouse, in the MDA framework ([15, 
16, 17, 18, 34]); to use the MDA approach in the 
design of a Spatial Data Warehouse [8]; to consider 
safety issues in the Data Warehouse ([27, 28, 30, 
31]) and to implement them in a specific OLAP 
tool or, finally, to use the MDA approach for the 
development of an ORDB [33]. The approach used 
in all cases by the presented works is in the MDA 
framework; this involves the use of associated 
standards proposed by the OMG (UML and profiles, 
OCL, XMI, CWM, and QVT).

Our proposal differs from the referenced works, 
mainly in the Multidimensional Model proposed: 
the Historical Data Warehouse represents a new 
data structure that combines and integrates, in a 
single model, a Data Warehouse and a Historical 
Data Base.

CONCLUSIONS

The main proposal of the work is the creation of 
a model and a method for the automatic design of 
a Historical Data Warehouse, that is, a new data 
storage structure that combines and integrates a Data 
Warehouse and a Historical Data Base, in a single 

model. This Temporal Multidimensional Model 
includes, besides the main analytical fact, temporal 
structures related to the levels of the dimensional 
hierarchies that make possible to record the data 
and to retrieve information that varies in time. Using 
the Model Driven Software Development paradigm, 
the Historical Data Warehouse is generated from 
a design method that, using a conceptual data 
model as source expressed in an ER model and 
by successive transformations, allows to obtain a 
logical implementation in an RDBMS. 

Our proposal differs from other related works in 
several aspects. First, the proposed storage structure 
(Historical Data Warehouse) is original in relation 
to other works, where the main focus is centered 
on Data Warehouse, Spatial Data Warehouse and 
ORDBs; second, the approach used in this work 
is the Model Driven Software Development, in 
particular DSM, and our proposal uses DSL. 
Unlike the MDA approach, where they promote 
the use of OMG standards, we do not use UML 
or profiles for the design of PIM. This simplifies 
the designer’s work, since he should only learn a 
simple notation, with limited elements and focused 
on their expertise domain.

In this regard, the applicability of the Model Driven 
Software Development paradigm is important to 
emphasize that most of the presented papers are 
connected with storage structures. Undoubtedly, the 
main cause is the relative simplicity for representing 
the transformation of static structures, unlike the 
dynamic part (the functional aspects) of the computer 
systems whose essence is more complex to capture. 
Regarding this last point, our proposal considers 
aspects related to the behavior, in some way, by 
permitting to derive queries on the Data Base.

FUTURE WORK

From the work presented, a range of possible lines 
of research is opened that were not considered in 
the development of the work but which deserve to 
be taken into account in future works. Below, we 
will detail, the issues that we have not considered 
and whose solution involves a line of research to 
develop:

The creation of a DLS for Data Warehouse 
transformations. In our work we used the ATL 
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language to define transformations between 
the models proposed. ATL is a hybrid model 
transformation language that allows both 
declarative and imperative constructs to be used 
in transformation definitions, that is, it provides 
syntactic constructions focused on the definition of 
transformations among models. Additionally, these 
transformation languages (LT) can accept a higher 
degree of specialization, that is, we could define a 
domain-specific language for the transformation. 
In our case, we could define specific LT Data 
Warehouse transformations. To have a specific 
language versus a more general language, such as 
ATL, would remarkably facilitate the definition 
and reuse of transformations.

The consideration of the user’s requirements in the 
design of the Historical Data Warehouse. Our work 
uses a conceptual data model expressed in an ER 
model, as the source model for the transformation 
process, which we believe represents the information 
requirements of the users, at least in regard to the 
transactional application. We have not considered how 
to evaluate and capture the information requirements 
of the users in multidimensional and temporal aspects 
in the Historical Data Warehouse design. Partly, 
it is that way because the transformations begin 
with the PIM, regardless of the CIM, explicitly. 
The transformation from CIM to PIM is not a very 
developed area, opening a line of research to be 
considered in future works.

The extension of the data model. The temporal data 
model used is the ER standard model, which only 
includes the basic constructions and, through them, 
the capture of the temporal aspects implicitly. We 
have not initially considered grade relationships in 
our data model > 2 and neither did we extend its 
semantic concepts such as generalization, aggregation 
and temporal constructions. These aspects deserve 
to be evaluated and considered in future extensions 
of the data model used. 

The temporal integrity restrictions. The model, as it 
is planned, does not consider restrictions in regard 
to the updates, so the case of temporal overlapping 
may exist. The establishment of restrictions regarding 
the insertion, deletion and modification of temporal 
values should prevent possible inconsistencies in 
the Data Base. 

The automatic derivation of the ETL process. 
Another aspect that we have not considered in our 
Historical Data Warehouse design is how to perform 
the ETL process. This process is important because 
it is responsible for integrating data from different 
heterogeneous sources. For the construction of the 
conceptual model we start from an ER model that 
represents a non-historical Data Base. The extension 
to a temporal model does not conceptually imply 
greater inconvenience. The load of historical data 
does require considering strategies for the fill up of 
the Historical Data Warehouse from data coming 
from backups stored in different supports and 
formats. One line of research to consider is, in the 
context of the Model Driven Software Development, 
the automatic code generation of ETL processes.

The use of an Object Relational PSM. We have 
used the relational model, in particular the standard 
SQL92 for the development of PSM. The ORDB 
Data Bases (standard SQL2003) presents such 
constructions as the abstract data types defined by 
the user, which would permit a simpler representation 
of the proposed temporal model, allowing to develop 
an associated line of research.
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