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ABSTRACT

The objective of this work is to evaluate the performance of a Boundary Element Method (BEM) accelerated 
by the Fast Multipole Method (FMM) compared with a direct (BEM) in an optimization topology 
problem. The formulation of the Fast Multipole Boundary Element Method (FMBEM) is introduced in 
order to make the optimization process more attractive from the point of view of the computational cost. 
The fast multipole formulation is briefly summarized. A topological-shape sensitivity approach is used 
to select the points showing the lowest sensitivities, where material is removed by opening a cavity. As 
the iterative process evolves, the original domain has holes progressively removed, until a given stop 
criteria is achieved. For comparison, the topology resulting from a direct BEM optimization process is 
used. The CPU time x DOF’s is also investigated. The accelerated BEM shows good performance in an 
optimization routine. 
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RESUMEN 

El objetivo de este trabajo es evaluar el rendimiento de un Método de elementos de contorno (BEM) 
acelerado por el Método Multipolar Rápido (FMM), en comparación con un BEM directo en un problema 
de optimización de topología. La formulación del Método de elementos de contorno multipolar rápido 
(FMBEM) se introduce con el fin de hacer que el proceso de optimización sea más atractivo desde el punto 
de vista del coste computacional. La formulación del método multipolar rápido se resume brevemente. 
Un enfoque al respecto de la sensibilidad topológica-forma es empleado para seleccionar los puntos 
que muestran las sensibilidades más bajas, a la cual se le retirará material mediante la apertura de una 
cavidad en el mismo. A medida que el proceso iterativo evoluciona, el dominio original tiene agujeros 
eliminadas progresivamente, hasta que se alcanza un criterio determinado de parada. Para la comparación, 
se utiliza la topología resultante de un proceso de optimización directa BEM. El tiempo de CPU x GDL 
también es investigado. El BEM acelerado muestra un buen rendimiento en una rutina de optimización.

Palabras clave: Optimización de la topología, derivada topológica, método multipolar rápido, método 
de elementos de contorno.
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INTRODUCTION

Although the Boundary Element Method (BEM) 
provides some advantages when modelling many 

problems, its efficiency is not suitable for large-
scale models. The BEM, in general, produces dense 
and non-symmetric matrices that, in spite of being 
smaller in size, require O(N2) operations to compute 
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the coefficients (N is the number of equations of the 
linear system and O regards to operation). In order 
to solve the resulting system using direct solvers, 
other O(N3) operations is also required. In order to 
overcome this inefficiency a coupling between the 
Fast Multipole Method and the BEM is proposed. 
This will allow solving problems with several million 
degrees of freedom (DOF’s). Generally, the Finite 
Element Method (FEM) is indicated to solve models 
with several million DOF’s. On the other hand, the 
BEM has been limited for solving problems with 
a few thousand DOF’s for many years. In the last 
years, great efforts have been made to improve the 
computational cost of the BEM, maintaining its 
features, such as, easy of modeling, small matrices 
and no mesh dependency. The BEM can now be 
applied to large scale problems, as the topology 
optimization problem. Because this sort of problem 
is iterative, the number of elements increases as 
the material is removed and therefore a significant 
number of DOF’s are introduced. The computational 
cost is a serious problem especially when the case 
under investigation is a 3D problem. During the last 
decades, many efforts have been done in order to 
accelerate the BEM for large-scale problems. The 
FMM was firstly presented by [1, 2] with the aim 
of accelerating BEM solutions. The main goal was 
to reduce the CPU time in FMM accelerated BEM 
to O(N). Thereafter, this technique was applied 
for solving elasticity [3] and fluid [4] problems in 
large-scale. According [5] the FMM was considered 
one of the top algorithms in scientific computing 
developed in the 21th century. In this publication, 
the authors developed a complete tutorial which 
presents the basic concept and the main procedures 
in the FMM for solving boundary integral equations 
for 2D potential problems. The FMM formulation 
was extended in [6] for large-scale analysis of 
two-dimensional (2D) Stokes flow problems. For 
solving the dual Boundary Integral Equation (BIE) 
formulation, [6] employed a linear combination for 
the velocity and the hipersingular BIE for traction 
to attain a better conditioning for the system of 
equations. Some examples were presented and 
showed the good accuracy and efficiency with 
the proposed approach. The book Fast Multipole 
Boundary Element Method [7] give many instructions 
in order to provide fundamentals to implement the 
method. The FMM was implemented by [8] for 
solving the effective thermal conductivity (ETC) 
of random micro-heterogeneous materials using 

representative elements and the FMBEM. The 
main goal of this paper is to implement the FMM 
in a topology optimization code. The idea relies on 
comparing the performance of both methodologies, 
i.e., optimization with Direct BEM against FMBEM 
with respect to CPU time and resulting topologies. 
This paper is organized as follow: The main idea 
of Topological Derivative (DT) is discussed and 
the respective analytical expressions for Poisson 
problems are presented. The BEM and the FMBEM 
for 2D potential problem are shown. In the sequence 
some numerical examples and their results are 
presented. Finally this work is concluded and some 
discussions are carrying on.

TOPOLOGICAL DERIVATIVE

A topological derivative (DT) for the Poisson 
equation is applied in this work for determining the 
domain sensitivity. A simple example of applicability 
consists in a case where a small hole of radius (ε) is 
open inside the domain. The concept of topological 
derivative consists in determining the sensitivity 
of a given cost (ψ) function when this small hole 
is increased or decreased. The local value of the 
DT at a point ( ) inside the domain for this case is 
evaluated by equation (1).

DT
*

(x) = lim
ε→0

ψ(Ωε )−ψ(Ω )

f (ε)
, (1)

where ψ(Ω) and ψ(Ωε) are the cost function 
evaluated for the original and the perturbed domain, 
respectively, and f is a problem dependent regularizing 
function. By equation (1), it is not possible to 
establish an isomorphism between domains with 
different topologies. This equation was modified 
introducing a mathematical idea that the creation of 
a hole can be accomplished by simply perturbing an 
existing one whose radius tends to zero. This allows 
the restatement of the problem in such a way that 
it is possible to establish a mapping between the 
two domains [9], as equation (2).

DT
*

(x) = lim
ε→0

ψ(Ωε+δε )−ψ(Ωε )

f (Ωε+δε )− f (Ωε )
, (2)

where δε is a small perturbation on the holes radius. 
In the case of linear heat transfer, the direct problem 
is stated as equation (3).
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Solve

uε | −kΔuε = b{ }    on   Ωε (3)

The boundary conditions imposed to the external 
boundaries are subjected to equation (4): 

uε = u
ε

on ΓD

k
∂uε
∂n

= q
ε

on ΓN

k
∂uε
∂n

= hc uε -u∞( ) on Γ R ,

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

(4)

where equation (5),

h α,β ,γ( ) =α uε −u
ε( )

Dirichlet
  

+β k
∂uε
∂n

+ q
ε⎛

⎝
⎜

⎞
⎠
⎟

Neumann
  

+γ k
∂uε
∂n

+ hc
ε uε −u∞

ε( )⎛
⎝
⎜

⎞
⎠
⎟

Robin
  

= 0
(5)

Regarding to equation (5), h is a function which 
takes into account the type of boundary condition 
on the holes to be created. It means that if h(0, 
0,1) a boundary condition of Robin is imposed on 
the holes. The temperature and flux on the hole 

boundary are uε ,
∂uε
∂n

= qε ,  while u∞
ε  and hc

ε

 
are

 
the hole internal convection parameters, respectively. 
After an intensive analytical work, an explicit 
expressions for DT were developed for problems 
governed by equation (3). Table 1 summarizes the 
final expressions for the topological derivative, 

considering the three classical cases of boundary 
conditions on the holes.

THE BOUNDARY ELEMENT METHOD

A brief review on the boundary element method 
using constant elements is summarized in this work. 
An initial domain depicted in Figure 1 is established 
for prescribed boundary conditions, considering a 
Laplace equation governing a 2D potential problem 
presented as equation (6).

∇2u(x) = 0,∀x ∈Ω; (6)

Figure 1. Domain Ω and its boundary Γ.

For a potential problem, three kinds of boundary 
conditions may be imposed: Dirichlet, Neumann 
and/or Robin. For this presentation, the first 
and second boundary conditions are imposed as 
equation (7).

u(x) = u(x),∀x ∈ Γ1;

q(x) =
∂u

∂n
(x) = q(x),∀x ∈ Γ 2

(7)

where u is the potential field in domain Ω, Γ is the 
boundary of Ω, n is the outward normal. Note that 
the barred quantities are the values imposed by the 
boundary conditions. The solution of equation (6) 
under boundary conditions equation (7) is presented 
as equation (8).

u(x) = [u∗

S

∫ (x, y)q(y)

−q∗(x, y)u(y)dS(y),∀x ∈Ω
(8)

Table 1. Topological derivative for the various 
boundary conditions prescribed on the 
holes.

Boundary condition on the hole
Neumann homogeneous boundary 
condition 
(α = 0, β =1 , γ = 0) 

TD x ∈Ω ∪ Γ  

Neumann non-homogeneous 
boundary condition 
(α = 0, β =1 , γ = 0) 

(   )TD x q uε= −  x ∈Ω ∪ Γ  

Robin boundary condition 
(α = 0, β = 0, γ = 1) 

( )( )T cD x h u uε
ε ∞= −  x ∈Ω ∪ Γ  

Dirichlet boundary condition 
(α = 1, β = 0, γ = 0) ( )1

(   )
2TD x k u uε= − −  x ∈ Ω  

Dirichlet boundary condition 
(α = 1, β = 0, γ = 0) 

(   )TD x k u u buε= ∇ ∇ −  x∈Γ  

( x ) = k∇u∇u–bu 

 Topological derivative evaluated at 
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where u*(x, y) and q*(x, y) are the Green’s function 
for 2D problems as equation (9).

u*(x, y) =
1

2π
ln r( )

q*(x, y) =
∂u*(x, y)

∂η(y)
=

1

2πr
∂r
∂η

(9)

where r represents the distance between the 
collocation point x and the field point y, as depicted 
in Figure 1. Taking x to the boundary, the classic BIE 
formulation of BEM [10] is obtained as equation (10).

C(x)u(x) = [
S

∫ u*(x, y)q(y)

−q*(x, y)u(y)] dS(y),∀x ∈ Γ ;
(10)

If the boundary is smooth at the collocation point 
x, C(x) = 1/2. The next step consists in discretizing 
the boundary Γ using N constant elements. The 
discretized equation of BIE is now presented as 
equation (11).

1

2
ui = Gijq j − Ĥiju j

j=1

N

∑ ,
j=1

N

∑

i =1,2,3,...,N;

(11)

where the uj and qj (j = 1,2,…,N) are the nodal 
values of the u and q at the element ΔSj, respectively. 
Applying the boundary conditions (7) at each node 
and switching the columns for grouping the unknown 
variables, one finds the equation (12). 

A λ = B (12)

where A is the coefficient matrix, λ the unknown 
vector and B the known right-hand side vector.

THE FAST MULTIPOLE BOUNDARY 
ELEMENT METHOD

The BEM uses the Green’s functions as the weighting 
function on its formulation which increase the 
accuracy when compared with others numerical 
techniques [11]. As a result, the spatial dimension 
is reduced by one. Additionally, the computational 
cost of a traditional direct BEM can be reduced 
by using the FMBEM. The goal of FMM relies on 
translating node-to-node interactions to cell-to-cell 

interactions. These cells have a hierarchical structure 
called tree while the small ones are called leaves. 
The FMM employs iterative equation solvers 
(GMRES) where matrix-vector multiplications 
are calculated using fast multipole expansions. As 
iterative equations are used, some parameters for 
the FMM, such as maximum number of elements 
allowed in a leaf (maxl) and in the tree structure 
(levmax), number of terms in multipole expansion 
(nexp) and local expansion (ntylr), and also the 
GMRES tolerance (tol) must be set. Expansions 
used for 2D potential problem for the FMM are 
briefly summarized in Table 2. Further details about 
the analytical derivations can be found in [5, 7].

Table 2. M2M, M2L and L2L expansions.

Kernel u* 

M2M 

M2L 

L2L 

The main idea of the fast multipole BEM can be 
briefly described as:

o Step 1 – Discretization. The domain Ω is 
discretized into boundary elements.

o Step 2 – Construction of the tree structure of the 
boundary element mesh. A square covering the 
discretized domain Γ is considered. This square 
is classified as a cell of level 0. This parent cell 
is divided into four child cells, now classified 
as level 1. This procedure is iteratively done 
until a stop criteria is achieved. This criteria is 
achieved when the number of elements imposed 
by the user in that cell is reached. A cell having 
no child cells is call leaf, which are in grey in 
Figure 2.

o Step 3 - Computation of moments on all cells. 
This step is also known as upward pass. The 
moments are computed on all cells. If a leaf is 
under consideration, moments are calculated 

directly by using Mk (zc) = Ik
Sc

∫ (z − zc)q(z)dS(z)
 

where Sc is the set of elements contained in 
the leaf and zc is the centroid of the leaf. For 
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the parent cell, the M2M translation is applied 
and the moments are summed on its four child 
cells. The M2M equation is presented in table 2 
where zc is the centroid of the parent cell while 
the zc represents the centroid of a child cell. 

o Step 4 – Determination of cells with interactions. 
This step is named Downward pass. In this step 
a classification is done in order to define the 
distribution of all cells around a defined cell 
C. Adjacent cells are those level l that have at 
least one common vertex. Cells well separated 
at a level l are those who are not adjacent at 
level l but their parent cells are adjacent at 
level l-1.The interaction list of C is a list of all 
well-separated cells from a level l . Far cells of 
C are those whose parent cells are not adjacent 
to the parent cell of C. The local expansion 
associated with a cell C is calculated by the 
use of the M2L translation. The L2L translation 
is calculated for the parent cell of C with the 
expansion point being shifted from the centroid 
of C parent cell to that of C. Considering the 
cell C at level 2, the M2L translation is used to 
compute the coefficients of the local expansion.

o Step 5 – Evaluation of the integrals. 
o Step 6 –Iterations of the solutions. The unknown 

solution vector λ in the system A λ = B is 
updated by the iterative solver and continues 
for all levels to evaluate the subsequent matrix 
and vector multiplication A λ until the solution 
λ converges to a defined tolerance.

Figure 2 depicts the basic idea of the steps involved 
in the FMM.

NUMERICAL RESULTS

The high computational effort involved in an 
optimization process motivates the implementation 
of the FMM in order to maintain those attractive 
characteristics when coupling BEM and DT [10].
This section presents one example that demonstrates 
the application of the proposed method. The results 
obtained for the FMBEM for each case are compared 
with Direct BEM. During the optimization process, 
the computational cost, number of DOFs and volume 
were taken into account. For a specific iteration, the 
respective intermediary topology is illustrated. The 
iterative process was halted when a given amount of 
material was removed from the original domain. In 
all cases, the total potential energy was used as the 

cost function. A regularly-spaced grid of internal 
points was generated automatically, taking into 
account the radius of the holes created during each 
iteration. The radius was obtained as a fraction of 
a reference dimension of the domain (r = ω lref). 
In all cases lref = min (height, width) was adopted. 
The objective in all cases was to minimize the 
material volume. The current volume of the domain 
(Vf) was checked at the end of each iteration until 
a reference value was achieved (Vf = φ V0, where 
V0 represents the initial volume and φ a defined 
percentage of material to be removed).

Heat Conductor
This example refers to a square domain subjected 
to low temperature boundary conditions (BC) on 
its corners and a decentralized high temperature 
BC at the left surface. The problem is illustrated as 
Figure 3, where TH is the high temperature (373 K) 
and TL is the low temperature (273 K). 

The remaining boundaries and the holes opened 
during the optimization process are insulated. The 
stop criteria was set when Vf = 0.6 V0 is reached. In 
order to evaluate the different resulting topologies due 
to the FMBEM parameters, five cases with distinct 
set up are considered. All cases (case (a), case (b), 
case (c), case (d) and case (e)) presented in Figure 4 
are always compared with the topology resulting by 
using the direct BEM, namely case (f). For the case 

Figure 2. FMM Scheme.
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both cases, Figure 5. Also, it is important to note 
that both topologies attained the same volume at 
the same iteration. The CPU time x DOF for case 
(e) and case (f) are presented in Figure 6. During 
the optimization process, a maximum number 
of approximately 2500 elements were evaluated. 
It is possible to verify that the performance of 
the FMBEM is superior when a large number of 
elements is used. An interesting evaluation relies 
on determining the intersection between the curves. 
This intersection allows determining exactly the 
number of DOF in which the FMBEM overtakes 
the direct BEM in efficiency.

As the main goal of this work regards to decrease the 
computational cost, some additional computational 
artifices in the numerical routine were also employed. 
One of these artifices regards to reduce the internal 
grid of internal points. In this sense the present code 
was written in order to generate internal points 
only near the boundaries (offset) or in the domain. 
Obviously, when dealing with domains with a 
significant internal sensitivity, an evaluation on 
all domain is required. A good recommendation is 
to use both numerical artifices, i.e. some iteration 
with an offset of internal points and a predefined 
intermediary iteration which takes into account a 

Figure  3. Heat conductor boundary conditions.

Figure 4. Comparison between topologies with 
approximately 60% of volume.

(f) constant elements were used and all integrations 
were performed analytically, characterizing it as a 
benchmark test. The comparison on performance 
between both methods is only carried out when 
the FMBEM final topology matches with that one 
stressed in the benchmark test. Figure 4 shows the 
topological results using different parameters (tol, 
maxit, maxl, levmx, nexp, ntylr) in the FMBEM. 
The first four topologies showed a slight difference 
when compared with case (f), due to the parameters 
of FMBEM employed. From now on, only case (e) 
and case (f) will be considered. Case (e) produced a 
topology that matches perfectly with that resulting 
by using Direct BEM, and for this reason it is 
possible to compare the temperature distribution in 

Figure 5. Color map for case (e) and case (f).

Figure 6. Direct BEM and FMBEM CPU times x 
DOF.
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complete grid over the domain, see Figure 7. It is 
also important to remark that this procedure is not 
possible in the finite element method due to its 
features of domain mesh. The feature of absence 
of domain mesh makes BEM more suitable for 
topological optimization than the FEM.

CONCLUSIONS

The computational cost is an important Issue  in 
any numerical analysis. Regardless of the many 
attractions of the boundary element method, the 
technique is not widely used in commercial codes 
because of the high computational cost for solving 
large-scale problems. This problem increases when 
considering an iterative optimization process, where 
the problem must be evaluated several times. In 
order to overcome this difficulty, the FMBEM was 
implemented in a topological optimization code. 
The resulting topology of a benchmark test using 
the FMBEM was compared with the final topology 
obtained by using the direct BEM. The CPU time for 
both cases was compared until the final topologies 
have been reached. The final topologies for case 
(e) and (f) have shown good agreement once the 
FMBEM parameters were adjusted. The results 
suggest that the direct BEM is more efficient for 
problems with a coarse discretization, i.e., smaller 
number of DOF’s. As the iterative process evolves, 
the number of elements increases significantly and 
the FMBEM overtakes the direct BEM in efficiency. 
Some remarks must be taken into account, such as; 
while the iterative process does not reach around 
2500 DOF’s, the direct BEM is recommended. 
When this number of DOF’s is exceeded a flag 
(previously implemented in the code) must be 
turned on so that the process is carried on using the 
FMBEM. Another interesting conclusion relies on 
the fact that the final shape of the resulting topology 

depends significantly on the parameters set for the 
FMBEM. Finally, the use of the FMBEM allows 
very well refined topologies to be treated without 
needing parallel computation.
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