
Ingeniare. Revista chilena de ingeniería - Volumen 26 - Número Especial, 2018 - Páginas 6-11

Diffie-Hellman Protocol with a Combination of Hyperelliptic Curves

and Neural Synchronization

Protocolo Diffie-Hellman con una Combinación de Curvas

Hiperelípticas y Sincronización Neuronal

Angelo Araya Villanueva1 Ivan Jiron Araya2 Ismael Soto Gomez3

Recibido 27 de junio de 2018, aceptado 06 de agosto de 2018

Received: June 27, 2018 Accepted: August 06, 2018

ABSTRACT

This work proposes a new cryptosystem, combining a Diffie-Hellman protocol in which hyperelliptic curves

over GF(2n) are implemented, with a Tree Parity Machine (TPM) synchronization. Security proposed for

this cryptosystem is focused on overcoming a weakness of neuronal synchronization. Specifically, the

stimulus vector that is public, which allows an attacker to try to synchronize with one of the participants of

the synchronization. Focusing on this weakness, there are the following attacks: genetic attack, geometric

attack and probabilistic attack. In the proposed cryptosystem, the initial stimulus vector will be hidden,

because this vector is obtained as the common secret key in the Diffie-Hellman protocol. Then in each

iteration, the stimulus vectors will be kept secret. This condition causes the learning time tlear to increase

by a term of approximately 115% regarding the synchronization time tsync on average when the proposed

cryptosystem is compared to the classic TPM synchronization.

Keywords: Cryptography, Hyperelliptic Curves, Neural Synchronization.

RESUMEN

Este trabajo propone un nuevo criptosistema, que combina el protocolo Diffie-Hellman en el cual se

implementan curvas hiperelípticas sobre GF(2n), con la sincronización de Tree Parity Machines (TPM).

La seguridad propuesta para este criptosistema se centra en superar una debilidad de la sincronización

neuronal. Específicamente, que el vector de estímulos es público, lo cual permite a un atacante intentar

sincronizar con uno de los participantes de la sincronización. Enfocándose en esta debilidad, existen

los siguientes ataques: simple, genético, geométrico y probabilístico. En el criptosistema propuesto, el

vector de estímulo inicial se encuentra oculto, porque este vector se obtiene como la clave común secreta

en el protocolo Diffie-Hellman. Luego, en cada iteración, los vectores de estímulo se mantendrán en

secreto. Esta condición hace que el tiempo de aprendizaje tlear aumente en aproximadamente 115% con

respecto al tiempo de sincronización tsync en promedio, cuando el criptosistema propuesto se compara

con la sincronización de TPM clásica.

Palabras clave: Criptografía, Curvas Hiperelípticas, Sincronización Neuronal.

1 Departamento de Ingeniería de Sistemas y Computación. Universidad Católica del Norte. Avda. Angamos 0610. Antofagasta,
Chile. E-mail: angelo.araya@ucn.cl

2 Departamento de Matemáticas. Universidad Católica del Norte. Avda. Angamos 0610. Antofagasta, Chile. E-mail: ijiron@ucn.cl
3 Departamento de Ingeniería Eléctrica. Universidad de Santiago de Chile. Avda. Ecuador 3519, Santiago, Chile.
 E-mail: ismael.soto@usach.cl

Araya, Jiron and Soto: Diffie-Hellman Protocol with a Combination of Hyperelliptic Curves and Neural Synchronization

7

INTRODUCTION

Cryptography is the practice and study of techniques

for secure communications, it has been approached

by many researchers in several applications as the

well-known cryptographic protocol of public-key

Diffie-Hellman and the ElGamal encryption [1],

another of these public-key applications is the

one based on Hyperelliptic Curves [2], despite its

computational complexity, this application offers

security within smaller keys. Another public-

key application is the use of Neural Networks

Synchronization [3], which is based on the exchange

of information between two neural networks ending

in the synchronization of their hidden weights

acting as the secret key on a communication. This

paper is organized as follows. Section 2 introduces

an overview of TPM neural networks and their

synchronization. Section 3 presents the essential

definitions about hyperelliptic curves. Section 4

provide a detailed explanation and the highlights of

the proposed cryptosystem. Section 5 presents the

analysis of results. Section 6 presents the conclusions

and future work.

NEURAL NETWORKS

Generally, a neural network is a machine that is

designed to model the way in which the brain

performs a single task or function of interest; the

network is usually implemented by using electronic

components or is simulated in software on a digital

computer [4].

One special kind of neural network called Tree

Parity Machine (TPM) are used for a secure key

exchange, it is based on the synchronization of two

of them [3]. Each TPM has the following elements:

it has only one output , hidden neurons and

 input units. The input units have values

. The synaptic weights are ,

 where L ∈ ! they are selected previously and

each part selects initially their own weight vector

W
!"!
= wij() randomly. The output of neuron

is given by (1)

σ
i
= sgn wijwij

j=1

N

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ (1)

where sgn (∙) is defined by (2)

sgn x() =
−1, x ≤ 0

 1, x > 0

⎧
⎨
⎪

⎩⎪
(2)

And the output of the TPM is given by (3)

τ = σ
i
∈ −1,1{ }

i=1

K

∏ (3)

Also, it is necessary to choose a learning rule that

adjust the weights because the initial weights in

every TPM are different (selected randomly), and

is necessary to make them identical to complete

the synchronization process. Note that the sender

output goes to the receiver, and the receiver

feeds back his output to the sender. Then, both

networks are trained with the output of its partner

with the learning rule (4)

wi, j
+
= g wi, j + xi, jθ σ iτ()θ τ Aτ B()() (4)

where is the Heaviside function and,

.

Only weights belonging to the one hidden units

which are in the same state as that of their output

unit are updated, in each one of the networks. Note

that, using this dynamical rule, the sender is trying

to imitate the response of the receiver and the

receiver is trying to imitate the one of the sender.

This rule (Random Walk) has been selected over

others because all other suitable learning rules

(Hebbian and Anti-Hebbian) converge to it in the

limit [5].

HYPERELLIPTIC CURVES

A Galois field GF(pn) is a finite set with two

operations, addition and multiplication

, such that (GF(pn),+) is a commutative group. The

nonzero elements together with the multiplication
(GF(pn)–{0}, *) form a commutative group.

Furthermore, the product is distributive over

the addition [7, 8].

Galois fields GF(pn) can be built from GF(p). And

these fields are called extensions of GF(p). Primitive

polynomials P(x) of degree n defined over GF(p),

are used for this construction [8]. Thus, the field

Ingeniare. Revista chilena de ingeniería, vol. 26. Número Especial, 2018

8

GF(pn) has pn-1 distinct elements. Each non-zero

element of GF(pn) can be represented as (5)

αm
= α

i
α i
;α

i
∈GF p();m = 0,1,…p

n − 2
i=0

n−1

∑ (5)

where is a root of the primitive polynomial P(x)

chosen for the construction.

Example 1.Galois field GF(25) is an extension

of GF(2), which has been constructed using the

primitive polynomial P(x)= x5 + x2 + 1 of degree

n = 5 defined over GF(2). The Table 1 shows some

elements of this field [6].

Table 1. Some elements of field GF(25).

k k

0 1 3

1 4

2 2 1

Hyperelliptic curves are a special class of algebraic

curves and can be viewed as generalizations of elliptic

curves [2, 6]. They hold a series of definitions and

properties that can be viewed next.

Definition 1: A hyperelliptic curve C of genus g

1 over a Galois field GF(pn) is an equation of the

form (6)

C :v
2
+ h u()v = f u() (6)

where h(u), f (u) are polynomials with coefficients

in GF(p). Further, h(u) has degree at most g, and

f (u) is a monic polynomial of degree 2g+1. And,

there are no solutions (u,v) GF(pn) × GF(pn)

which simultaneously satisfy the hyperelliptic curve

equation and their partial derivatives 2v + h(u) = 0

and h (u) v – f (u) = 0.

Example 2: The hyperelliptic curve C: v2 + (u2 +

u) v = u5 + u3 + 1 over GF(25) has the polynomials
h(u) = u2 + u and f(u) = u5 + u3 + 1. Some of the

points that satisfy the equation of C are listed in

Table 2.

A divisor is a formal sum of points on C given by (7)

D = miPi∑ − mi∑()∞ mp ∈ ! (7)

where only a finite number of the integers mp are

nonzero, and is the point at infinity in the projective

plane, for more details about these topics the reader

can review the appendix in [2].

A divisor can be represented as two polynomials

as stated in the next theorem:

Theorem: Let D = mi Pi - (mi) be a divisor,

where Pi = (xi, yi). Let a(u) = Π(u – xi)
mi. There

exists a unique polynomial b(u) satisfying: (1)

degub < degua; (2) b(xi) = yi for which mi 0; and

(3) a(u) divides (b(u)2 + b(u) h(u) – f(u)). Then D

= (a(u), b(u)).

The divisors addition is developed with the two

following algorithms:

Algorithm 1 [2]

INPUT: Divisors D1 = (a1(u), b1(u)) and D2 = (a2(u),

b2(u)) both defined over GF(pn).

OUTPUT: A divisor D = (a(u), b(u)) defined over

GF(pn) such that D = D1 + D2.

1. Use the Euclidean algorithm to find polynomials

d1, e1, e2 GF(pn)[u] where d1 = g.c.d(a1, a2)

and d1 = e1a1+e2a2.

2. Use the Euclidean algorithm to find polynomials

d, c1, c2 GF (pn)[u] where g.c.d (d1, b1 + b2

+ h).

3. Let s1 = c1e1, s2 = c1e2, and s3 = and s3 = c2, so

that d = s1a1 + s2a2 + s3(b1 + b2 + h)

3. Set a = a1 a2/d
2

And

b =
s
1
a
1
b
2
+ s

2
a
2
b
1
+ s

3
b
1
b
2
+ f()

d

Algorithm 2 [2]

INPUT: A divisor D = (a(u), b(u)) defined over

GF(pn).

Table 2. Some points of C: v2 + (u2 + u) v = u5 +

u3 + 1 over GF(25).

(0,1) (1,1) (α5, α15) (α7, α4) (α7, α25)
(α9, α27) (α9, α30) (α10, α23) (α14, α8) (α14, α19)

(α20, α15) (α20, α29) (α23, 0) (α25, α) (α25, α14)

(α27, 0) (α27, α2) (α28, α7) (α29, 0) (α29, α)

Araya, Jiron and Soto: Diffie-Hellman Protocol with a Combination of Hyperelliptic Curves and Neural Synchronization

9

OUTPUT: The (unique) reduced divisor D = (a

(u), b (u)) such that D = D.

1) Set

a = (f – bh – b2)/a

And

b = (–h – b) mod a ,

2) If degua > g then set a a , b b , and go to

step 1.

3) Let c be the leading coefficient of a and set a

 c-1a .

4) Output (a (u), b (u)).

PROPOSED CRYPTOSYSTEM

The proposed cryptosystem consists in a Diffie-

Hellman cascade implementation with two layers.

In the first layer Diffie-Hellman key exchange

is implemented with divisors on a hyperelliptic

curve (D-H HC). And in the second layer Diffie-

Hellman key exchange is implemented with TPM

synchronization (D-H TPM S). Figures 1.a and

1.b show the system diagram of the proposed

cryptosystem.

For a better understanding, first it is necessary to

clarify which elements are public. In the first level

D-H HC the public elements are: the hyperelliptic

curve that is used C, the initial reduced divisor D
and the public divisors DA, DB, which are the public

keys of Alice and Bob, respectively. In the second

layer the public elements are: the TPM network,

the output of both neural networks A, B used on

the synchronization process, and the shift numbers

(SA, SB) that will change the input value. Next the

key exchange is explained in detail.

Starting at the top of the diagram there are the

private keys ka, kb of Alice and Bob respectively.

Each one of them use his private key to multiply

the public divisor D and reduce the result to obtain

their own public key divisors (DA = kaD, DB = kbD)

using algorithms 1 and 2. After this, they exchange

Figure 1.a System Diagram. b) System Diagram.

Ingeniare. Revista chilena de ingeniería, vol. 26. Número Especial, 2018

10

the divisors DA, DB, and apply their secret key over

the received divisor and reduce the result again

to obtain a common divisor (Dc, ka = kbDA) that

belong to the curve C.

Now Alice and Bob have a secret common divisor,

each one takes this and send it to their Binary Box

which will take the divisor and convert it to its binary

form, for example let say that the common divisor

is Dc = (u2 + a15u + a26, a23u + a21) which belong

to the curve C in example 2 will be transformed

into {0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,0,0,

0}, and this array will be transformed into stimulus

vector X
!"
0 = {-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1,1,1,-

1,1,1,1,1,1,1,-1,-1,-1}.

This conversion is necessary because it is needed in

the next level where the TPM will be feed. Then, X
!"
0

is secret, unlike in the original TPM synchronization

where the input values are public. Here it will remain

secret in all the synchronization iterations.

Once Alice and Bob has reached this level

both sides will select their own weights vector

W

!"!
A,W
!"!

B randomly and secret, in every step of the

synchronization they will exchange their output A,

B to adjust their weights, and a shift number SA,

SB that will move the components in vector X
!"
0 to

the right SA + SB. This way the input values will

be kept secret and after the process both sides will

have a secret common set of weights W
!"!

c.

RESULTS DISCUSSION

Focusing in the weakness of the neural synchro-

nization, is necessary to clarify that:

In an attack of genetic type, the intention is to

define the evolution of the population formed by

the stimulus vectors of each TPM used in each

iteration to predict the weights [9,10].

In an attack of geometric type, the intention is to

define the surface formed by the stimulus vectors

of each TPM used in each iteration to predict the

weights [9,10].

In a probabilistic attack, the intention is to define the

probability distribution for the stimulus vectors of

each TPM used in each iteration and try to predict

the weights vector [9,10].

By cascading the Diffie-Hellman protocol

implemented with hyperelliptic curves with the

neuronal synchronization of TPMs, the stimulus

vector is hidden in each iteration, keeping the first

vector of stimuli secret X
!"
0, and making slides on

it at each iteration.

Thus, the learning time tlear, which corresponds to

the time necessary for the attack, increases, making

very difficult for the intruder to synchronize his

TPM with one used by Alice or Bob.

Using the experimental results presented in [11, 12]

it is possible to estimate the growth of learning time

tlear, as a time-dependent synchronization variable
tsync, In particular, the authors of [11, 12] measure

tsync and tlear for L = 1,2,3,4. Where tsync and tlear

are the number of steps to synchronize. These

measurements are shown in Table 3.

Table 3. Measurement of tsync and tlear times for L

= 1,2,3,4 [11, 12].

L tsync tlear

1 61 ± 10 1.1×102 ± 0.2×102

2 188 ± 26 1.5×103 ± 0.5×103

3 376 ± 51 4.5×104 ± 1.3×104

4 673 ± 95 6.9×107 ± 5.7×107

Then, from the analysis of these measurements it

can be established that tlear grows exponentially in

respect of tsync. Figure 2 shows the growth of tlear

Figure 2. Comparison between Classic TPM

synchronization and DH-HC-TPM

Synchronization.

Araya, Jiron and Soto: Diffie-Hellman Protocol with a Combination of Hyperelliptic Curves and Neural Synchronization

11

as a function of tsync. On average the learning time

increases in a term of approximately 115% for 100

 400, when using the combination of the Diffie-

Hellman protocol implemented with hyperelliptic

curves with neuronal synchronization of TPMs

(DH-HC-TPM Synchronization).

CONCLUSIONS

In this paper has been presented a new cryptosystem

that combines Diffie-Hellman protocol using

hyperelliptic curves and a public-key exchange

based on neural synchronization. Then, in this

cryptosystem the initial stimulus vector will be

hidden, because this vector is obtained as the secret

common key in Diffie-Hellman protocol. Then, in

each iteration, the stimulus vectors will be kept

secret. This condition makes that the learning time

tlear increases in a term of approximately 115% in

respect of synchronization time tsync on average,

when the proposed cryptosystem is compared to

the classic TPM synchronization.

As future works the synchronization for other neural

network topologies will be studied. Furthermore,

the proposed algorithm will be evaluated on a

Visible Light Communication (VLC), Fading, and

Wired channels.

REFERENCES

[1] C. Paar, J. Pelzl. “Understanding Cryp-

tography”. Springer-Verlag, Berlin Hei-

delberg, 2010. ISBN 978-3-642-04100-6.

[2] N. Koblitz. “Algebraic Aspects of

Cryptography”. Springer-Verlag, 1999.

ISBN 3-540-63446-0.

[3] Kanter, W. Kinzel, and E. Kanter. “Secure

exchange of information by synchronization

of neural networks”, Europhys. Lett., vol. 1,

Nº 1, p. 11, 2002.

[4] S. Haykin. “Neural Networks and Learning

Machines”. ISBN 978-81-203-4000-8, 2011.

[5] Ruttor, W. Kinzel, I. Kanter. “Dynamics of

neural cryptography,” Phys. Rev. E - Stat.

Nonlinear, Soft Matter Phys., vol. 75, Nº 5,

pp. 1-9, 2007.

[6] H. Cohen, G. Frey. “Handbook of Elliptic

and Hyperelliptic Curve Cryptography”.

Chapman & Hall/CRC, 2006. ISBN

1-58488-518-1.

[7] T.W. Hungerford. “Algebra”. Springer; 8th

ed., 2003. ISBN-10: 0387905189.

[8] S. Lin, D.J. Costello. “Error Control Coding:

Fundamentals and Applications”. Pearson

Prentice Hall, 2004. ISBN 0-13-017973-6.

[9] S. Santhanalakshmi, T.S.B. Sudarshan, and

Gopal K. “Patra Neural Synchronization by

Mutual Learning Using Genetic Approach

for Secure Key Generation”. S.M. Thampi.

SNDS 2012, CCIS 335, pp. 422-431,

Springer-Verlag, 2012.

[10] Alexander Klimov, Anton Mityagin, and Adi

Shamir. “Analysis of Neural Cryptography”.

Y. Zheng (Ed.): ASIACRYPT 2002, LNCS

2501, pp. 288-298, Springer-Verlag, 2002.

[11] Kanter, W. Kinzel “The Theory of Neural

Networks and Cryptography”. Quantum

Computers and Computing. Vol. 5 Nº 1.

2005.

[12] M. Rosen-Zvi, I. Kanter, W Kinzel.

“Cryptography based on neural networks-

analytical results”. J. Phys. A: Math. Gen.,

vol. 35, pp. L707-L713, 2002.

