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ABSTRACT

This work proposes a new cryptosystem, combining a Diffie-Hellman protocol in which hyperelliptic curves 

over GF(2n) are implemented, with a Tree Parity Machine (TPM) synchronization. Security proposed for 

this cryptosystem is focused on overcoming a weakness of neuronal synchronization. Specifically, the 

stimulus vector that is public, which allows an attacker to try to synchronize with one of the participants of 

the synchronization. Focusing on this weakness, there are the following attacks: genetic attack, geometric 

attack and probabilistic attack. In the proposed cryptosystem, the initial stimulus vector will be hidden, 

because this vector is obtained as the common secret key in the Diffie-Hellman protocol. Then in each 

iteration, the stimulus vectors will be kept secret. This condition causes the learning time tlear to increase 

by a term of approximately 115% regarding the synchronization time tsync on average when the proposed 

cryptosystem is compared to the classic TPM synchronization.
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RESUMEN

Este trabajo propone un nuevo criptosistema, que combina el protocolo Diffie-Hellman en el cual se 

implementan curvas hiperelípticas sobre GF(2n), con la sincronización de Tree Parity Machines (TPM). 

La seguridad propuesta para este criptosistema se centra en superar una debilidad de la sincronización 

neuronal. Específicamente, que el vector de estímulos es público, lo cual permite a un atacante intentar 

sincronizar con uno de los participantes de la sincronización. Enfocándose en esta debilidad, existen 

los siguientes ataques: simple, genético, geométrico y probabilístico. En el criptosistema propuesto, el 

vector de estímulo inicial se encuentra oculto, porque este vector se obtiene como la clave común secreta 

en el protocolo Diffie-Hellman. Luego, en cada iteración, los vectores de estímulo se mantendrán en 

secreto. Esta condición hace que el tiempo de aprendizaje tlear aumente en aproximadamente 115% con 

respecto al tiempo de sincronización tsync en promedio, cuando el criptosistema propuesto se compara 

con la sincronización de TPM clásica.
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INTRODUCTION

Cryptography is the practice and study of techniques 

for secure communications, it has been approached 

by many researchers in several applications as the 

well-known cryptographic protocol of public-key 

Diffie-Hellman and the ElGamal encryption [1], 

another of these public-key applications is the 

one based on Hyperelliptic Curves [2], despite its 

computational complexity, this application offers 

security within smaller keys. Another public-

key application is the use of Neural Networks 

Synchronization [3], which is based on the exchange 

of information between two neural networks ending 

in the synchronization of their hidden weights 

acting as the secret key on a communication. This 

paper is organized as follows. Section 2 introduces 

an overview of TPM neural networks and their 

synchronization. Section 3 presents the essential 

definitions about hyperelliptic curves. Section 4 

provide a detailed explanation and the highlights of 

the proposed cryptosystem. Section 5 presents the 

analysis of results. Section 6 presents the conclusions 

and future work.

NEURAL NETWORKS

Generally, a neural network is a machine that is 

designed to model the way in which the brain 

performs a single task or function of interest; the 

network is usually implemented by using electronic 

components or is simulated in software on a digital 

computer [4].

One special kind of neural network called Tree 

Parity Machine (TPM) are used for a secure key 

exchange, it is based on the synchronization of two 

of them [3]. Each TPM has the following elements: 

it has only one output ,  hidden neurons and 

 input units. The input units have values  

. The synaptic weights are , 

 where L ∈ !  they are selected previously and 

each part selects initially their own weight vector 

W
!"!
= wij( )  randomly. The output  of  neuron 

is given by (1)

σ
i
= sgn wijwij

j=1

N

∑
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where sgn (∙) is defined by (2)

sgn x( ) =
−1, x ≤ 0

  1, x > 0

⎧
⎨
⎪

⎩⎪
(2)

And the output  of the TPM is given by (3)

τ = σ
i
∈ −1,1{ }

i=1

K

∏ (3)

Also, it is necessary to choose a learning rule that 

adjust the weights because the initial weights in 

every TPM are different (selected randomly), and 

is necessary to make them identical to complete 

the synchronization process. Note that the sender 

output  goes to the receiver, and the receiver 

feeds back his output  to the sender. Then, both 

networks are trained with the output of its partner 

with the learning rule (4)

wi, j
+
= g wi, j + xi, jθ σ iτ( )θ τ Aτ B( )( ) (4)

where  is the Heaviside function and,  

.

Only weights belonging to the one hidden units 

which are in the same state as that of their output 

unit are updated, in each one of the networks. Note 

that, using this dynamical rule, the sender is trying 

to imitate the response of the receiver and the 

receiver is trying to imitate the one of the sender. 

This rule (Random Walk) has been selected over 

others because all other suitable learning rules 

(Hebbian and Anti-Hebbian) converge to it in the 

limit  [5].

HYPERELLIPTIC CURVES

A Galois field GF(pn) is a finite set with two 

operations, addition  and multiplication  

, such that (GF(pn),+) is a commutative group. The 

nonzero elements together with the multiplication 
(GF(pn)–{0}, *) form a commutative group. 

Furthermore, the product  is distributive over 

the addition [7, 8].

Galois fields GF(pn) can be built from GF(p). And 

these fields are called extensions of GF(p). Primitive 

polynomials P(x) of degree n defined over GF(p), 

are used for this construction [8]. Thus, the field 
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GF(pn) has pn-1 distinct elements. Each non-zero 

element of GF(pn) can be represented as (5)

αm
= α

i
α i
;α

i
∈GF p( );m = 0,1,…p

n − 2
i=0

n−1

∑ (5)

where  is a root of the primitive polynomial P(x) 

chosen for the construction.

Example 1.Galois field GF(25) is an extension 

of GF(2), which has been constructed using the 

primitive polynomial P(x)= x5 + x2 + 1 of degree 

n = 5 defined over GF(2). The Table 1 shows some 

elements of this field [6].

Table 1. Some elements of field GF(25).

k k

0 1 3

1 4

2 2 1

Hyperelliptic curves are a special class of algebraic 

curves and can be viewed as generalizations of elliptic 

curves [2, 6]. They hold a series of definitions and 

properties that can be viewed next.

Definition 1: A hyperelliptic curve C of genus g  

1 over a Galois field GF(pn) is an equation of the 

form (6)

C :v
2
+ h u( )v = f u( ) (6)

where h(u), f (u) are polynomials with coefficients 

in GF(p). Further, h(u) has degree at most g, and 

f (u) is a monic polynomial of degree 2g+1. And, 

there are no solutions (u,v)  GF(pn) × GF(pn) 

which simultaneously satisfy the hyperelliptic curve 

equation and their partial derivatives 2v + h(u) = 0 

and h (u) v – f  (u) = 0.

Example 2: The hyperelliptic curve C: v2 + (u2 + 

u) v = u5 + u3 + 1 over GF(25) has the polynomials 
h(u) = u2 + u and f(u) = u5 + u3 + 1. Some of the 

points that satisfy the equation of C are listed in 

Table 2.

A divisor is a formal sum of points on C given by (7)

D = miPi∑ − mi∑( )∞  mp ∈ ! (7)

where only a finite number of the integers mp are 

nonzero, and  is the point at infinity in the projective 

plane, for more details about these topics the reader 

can review the appendix in [2].

A divisor can be represented as two polynomials 

as stated in the next theorem:

Theorem: Let D = mi Pi - ( mi)  be a divisor, 

where Pi = (xi, yi). Let a(u) = Π(u – xi)
mi. There 

exists a unique polynomial b(u) satisfying: (1)

degub < degua; (2) b(xi) = yi for which mi  0; and 

(3) a(u) divides (b(u)2 + b(u) h(u) – f(u)). Then D 

= (a(u), b(u)).

The divisors addition is developed with the two 

following algorithms:

Algorithm 1 [2]

INPUT: Divisors D1 = (a1(u), b1(u)) and D2 = (a2(u), 

b2(u)) both defined over GF(pn).

OUTPUT: A divisor D = (a(u), b(u)) defined over 

GF(pn) such that D = D1 + D2.

1. Use the Euclidean algorithm to find polynomials 

d1, e1, e2  GF(pn)[u] where d1 = g.c.d(a1, a2) 

and d1 = e1a1+e2a2.

2. Use the Euclidean algorithm to find polynomials  

d, c1, c2  GF (pn)[u] where g.c.d (d1, b1 + b2 

+ h).

3. Let s1 = c1e1, s2 = c1e2, and s3 = and s3 = c2, so 

that d = s1a1 + s2a2 + s3(b1 + b2 + h)

3. Set a = a1 a2/d
2

And

b =
s
1
a
1
b
2
+ s

2
a
2
b
1
+ s

3
b
1
b
2
+ f( )

d

Algorithm 2 [2]

INPUT: A divisor D = (a(u), b(u)) defined over 

GF(pn).

Table 2. Some points of C: v2 + (u2 + u) v = u5 + 

u3 + 1 over GF(25).

(0,1) (1,1) (α5, α15) (α7, α4) (α7, α25)
(α9, α27) (α9, α30) (α10, α23) (α14, α8) (α14, α19)

(α20, α15) (α20, α29) (α23, 0) (α25, α) (α25, α14)

(α27, 0) (α27, α2) (α28, α7) (α29, 0) (α29, α)
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OUTPUT: The (unique) reduced divisor D  = (a

(u), b (u)) such that D  = D.

1) Set

a = (f – bh – b2)/a

And

b = (–h – b) mod a ,

2) If degua  > g then set a  a , b  b , and go to 

step 1.

3) Let c be the leading coefficient of a  and set a

 c-1a .

4) Output (a (u), b (u)).

PROPOSED CRYPTOSYSTEM

The proposed cryptosystem consists in a Diffie-

Hellman cascade implementation with two layers. 

In the first layer Diffie-Hellman key exchange 

is implemented with divisors on a hyperelliptic 

curve (D-H HC). And in the second layer Diffie-

Hellman key exchange is implemented with TPM 

synchronization (D-H TPM S). Figures 1.a and 

1.b show the system diagram of the proposed 

cryptosystem.

For a better understanding, first it is necessary to 

clarify which elements are public. In the first level 

D-H HC the public elements are: the hyperelliptic 

curve that is used C, the initial reduced divisor D  
and the public divisors DA, DB, which are the public 

keys of Alice and Bob, respectively. In the second 

layer the public elements are: the TPM network, 

the output of both neural networks A, B used on 

the synchronization process, and the shift numbers 

(SA, SB) that will change the input value. Next the 

key exchange is explained in detail.

Starting at the top of the diagram there are the 

private keys ka, kb of Alice and Bob respectively. 

Each one of them use his private key to multiply 

the public divisor D and reduce the result to obtain 

their own public key divisors (DA = kaD, DB = kbD) 

using algorithms 1 and 2. After this, they exchange 

Figure 1.a System Diagram. b)  System Diagram.



Ingeniare. Revista chilena de ingeniería, vol. 26. Número Especial, 2018

10

the divisors DA, DB, and apply their secret key over 

the received divisor and reduce the result again 

to obtain a common divisor (Dc, ka = kbDA) that 

belong to the curve C.

Now Alice and Bob have a secret common divisor, 

each one takes this and send it to their Binary Box 

which will take the divisor and convert it to its binary 

form, for example let say that the common divisor 

is Dc = (u2 + a15u + a26, a23u + a21) which belong 

to the curve C in example 2 will be transformed 

into {0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,0,0,

0}, and this array will be transformed into stimulus 

vector X
!"
0 = {-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1,1,1,-

1,1,1,1,1,1,1,-1,-1,-1}.

This conversion is necessary because it is needed in 

the next level where the TPM will be feed. Then, X
!"
0  

is secret, unlike in the original TPM synchronization 

where the input values are public. Here it will remain 

secret in all the synchronization iterations.

Once Alice and Bob has reached this level 

both sides will select their own weights vector 

W

!"!
A,W
!"!

B  randomly and secret, in every step of the 

synchronization they will exchange their output A, 

B to adjust their weights, and a shift number SA, 

SB that will move the components in vector X
!"
0  to 

the right SA + SB. This way the input values will 

be kept secret and after the process both sides will 

have a secret common set of weights W
!"!

c.

RESULTS DISCUSSION

Focusing in the weakness of the neural synchro- 

nization, is necessary to clarify that:

In an attack of genetic type, the intention is to 

define the evolution of the population formed by 

the stimulus vectors of each TPM used in each 

iteration to predict the weights [9,10].

In an attack of geometric type, the intention is to 

define the surface formed by the stimulus vectors 

of each TPM used in each iteration to predict the 

weights [9,10].

In a probabilistic attack, the intention is to define the 

probability distribution for the stimulus vectors of 

each TPM used in each iteration and try to predict 

the weights vector [9,10].

By cascading the Diffie-Hellman protocol 

implemented with hyperelliptic curves with the 

neuronal synchronization of TPMs, the stimulus 

vector is hidden in each iteration, keeping the first 

vector of stimuli secret X
!"
0, and making slides on 

it at each iteration.

Thus, the learning time tlear, which corresponds to 

the time necessary for the attack, increases, making 

very difficult for the intruder to synchronize his 

TPM with one used by Alice or Bob.

Using the experimental results presented in [11, 12] 

it is possible to estimate the growth of learning time 

tlear, as a time-dependent synchronization variable 
tsync, In particular, the authors of [11, 12] measure 

tsync and tlear for L = 1,2,3,4. Where tsync and tlear  

are the number of steps to synchronize. These 

measurements are shown in Table 3.

Table 3. Measurement of tsync and tlear times for L 

= 1,2,3,4 [11, 12].

L tsync tlear

1 61 ± 10 1.1×102 ± 0.2×102

2 188 ± 26 1.5×103 ± 0.5×103

3 376 ± 51 4.5×104 ± 1.3×104

4 673 ± 95 6.9×107 ± 5.7×107

Then, from the analysis of these measurements it 

can be established that tlear grows exponentially in 

respect of tsync. Figure 2 shows the growth of tlear 

Figure 2. Comparison between Classic TPM 

synchronization and DH-HC-TPM 

Synchronization.
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as a function of tsync. On average the learning time 

increases in a term of approximately 115% for 100 

 400, when using the combination of the Diffie-

Hellman protocol implemented with hyperelliptic 

curves with neuronal synchronization of TPMs 

(DH-HC-TPM Synchronization).

CONCLUSIONS

In this paper has been presented a new cryptosystem 

that combines Diffie-Hellman protocol using 

hyperelliptic curves and a public-key exchange 

based on neural synchronization. Then, in this 

cryptosystem the initial stimulus vector will be 

hidden, because this vector is obtained as the secret 

common key in Diffie-Hellman protocol. Then, in 

each iteration, the stimulus vectors will be kept 

secret. This condition makes that the learning time 

tlear increases in a term of approximately 115% in 

respect of synchronization time tsync on average, 

when the proposed cryptosystem is compared to 

the classic TPM synchronization.

As future works the synchronization for other neural 

network topologies will be studied. Furthermore, 

the proposed algorithm will be evaluated on a 

Visible Light Communication (VLC), Fading, and 

Wired channels.
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