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ABSTRACT

Metagenomics is an area of microbiology that deals with the taxonomic classification of genomic samples 

taken directly from the environment. These samples are sequences of variable length and they may 

correspond to different species, some of which may be unknown or not previously stored in a genomic 

database. One of the main steps in metagenomics classification correspond to binning the sequence 

fragments into groups that may correspond to one species. Many approaches are used to perform binning, 

mainly machine learning algorithms to perform classification or clustering. This paper presents the results 

of an empirical evaluation of two well-known unsupervised algorithms to perform the metagenomics 

binning task: the EM versus the K-means algorithms. Both algorithms are tested on short and long reads 

of synthetic datasets, with different proportions and number of species. These empirical results show that 

K-means in general outperforms the EM algorithm, but EM results competitive in several of the short 

reads datasets used for evaluation.
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RESUMEN

La metagenómica es un área de la microbiología que trata con la clasificación taxonómica de muestras 

tomadas directamente del ambiente. Estas muestras son secuencias de largo variable que pueden pertenecer 

a distintas especies, algunas pueden ser desconocidas o no han sido almacenadas previamente en una base 

de datos genómica. Uno de los pasos principales en la clasificación metagenómica corresponde al proceso 

de binning de los fragmentos de secuencias en grupos que pueden corresponder a una especie. Se han 

usado varios acercamientos para realizar binning, principalmente algoritmos de machine learning para 

realizar la clasificación o agrupamiento. Este artículo presenta los resultados de una evaluación empírica 

de dos algoritmos no supervisados bien conocidos, para realizar la tarea de binning metagenómico: EM 

vs. K-medias. Ambos algoritmos son probados para secuencias largas y cortas de conjuntos de datos 

sintéticos, con diferentes proporciones y número de especies. Estos resultados empíricos muestran que 

K-medias en general tiene un mejor rendimiento que el algoritmo EM, pero los resultados de EM son 

competitivos cuando son probados con varios conjuntos de secuencias cortas.
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INTRODUCTION

A recurrent problem in microbiology is to identify 

the microorganisms present in an environment, if we 

consider that only 1% of the microorganisms in the 

environment are cultivable in the laboratory [1], 99% 

of them should be studied by indirect methods. The 

main of these indirect methods is the sequencing, which 

consists of the ordered reading of each nucleotide 

molecule that makes up the DNA chain (Adenine, 

Thymine, Guanine, Cytosine) and its interpretation 

in a chain using a specific character for each type of 

Nucleotide (A, T, G, C). The sequencing of all the 

genetic material of an organism is called its Genome.

The metagenome is one of the methods of microbiology 

used to know the behavior of an environment, and 

consists of the sequencing of all the genetic material 

present in a sample. Among the so-called new 

sequencing techniques is Shotgun sequencing, which 

results in a collection of sequences between 70 and 

200 characters long called reads. As the sample is 

environmental, it is unknown to which organism 

each reads belongs. The methods of binning are 

computational approaches for the grouping of these 

reads in genomes corresponding to their original species.

These methods may be presented as supervised or 

unsupervised. Supervised methods use previous 

information from databases to group reads into genomes, 

dragging the problem of classical microbiology from 

not knowing more than 1% of existing organisms in the 

environment; Unsupervised methods use extractable 

information from reads (e.g., character distribution, 

reads) to classify the sequences into genomes.

Unsupervised-type methods use clustering algorithms 

to determine which genome each read should 

correspond to. A widely used type of information 

is the repetition frequency of character sequences 

of a long l, in the literature this approach is found 

as a frequency of l-mers, n-grams, or k-mers. The 

use of l-mers is based on 2 properties [2]: i) the 

frequencies of l-mers of some read of a genome 

are linearly proportional to the abundance of such 

genome; ii) the frequency distribution of short 

l-mers is similar for similar genomes.

Related Work

A systematic search was performed with the 

keywords: “(metagenomic OR metagenome) AND 

binning AND (software OR method OR strategy 

OR proposal)”, which resulted in the existence 

of at least 27 different binning methods from the 

2012 through 2016 years, 23 of these methods use 

the l-mers frequency as classification information.

The most used value is l = 4, which is estimated 

to have a more stable frequency distribution for 

fragments of chromosomal DNA with a size of 500 

to 10,000 base pairs [3], 15 of these 23 approaches 

are based exclusively on use of 4-mers. Depending 

on the author’s interpretation, it may be a vector 

of 256 dimensions [4-9] or 136 dimensions, 

considering palindromic tetra-nucleotides as 

redundant information [10-15]. Table 1 summarizes 

the main features of the methods that consider 

136-dimensional 4-mers frequency vectors.

This paper addresses the task of binning metagenomic 

data based on reads sequences from synthetic 

datasets. In particular, it is sought to empirically 

establish the performance of two widely known 

clustering algorithms used for the binning task of 

metagenomic data: the K-means algorithm and the 

EM algorithm. In this way, it is sought to establish 

a baseline with which to compare new methods 

to propose based on a semi-supervised approach, 

considering a research in development in which it 

is hypothesized that a semi-supervised approach 

may be superior in some cases and in others be 

competitive with respect to baseline methods.

MATERIALS AND METHODS

EM (Expectation-Maximization) Algorithm: This 

algorithm consists of two steps, the Expectation step 

(E-step), and the Maximization step (M-step). The 

E-step basically fills in the missing data (the class 

value in our case) based on the current estimation 

of the parameters. The M-step, which maximizes 

the likelihood, re-estimates the parameters. These 

steps are repeated until EM converges to a local 

minimum when the model parameters stabilize [16].

K-means Algorithm: The K-means algorithm is a 

clustering algorithm based on systematic partitions 

of data [17], and considers the following steps: 

i)  Initially, K centroids are randomly generated; 

ii) The distance of each data of the dataset with 

respect to these centroids is measured; iii) Each data 
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is assigned to the group whose centroid is closest, 

thus forming K clusters; iv) The centroids of each 

group are recalculated. This process is repeated until 

the groups are stable, i.e., until all the groups from 

one iteration to the next do not change, or until a 

predefined number of iterations has been reached. 

Otherwise, the process is repeated from the step ii).

Datasets of Short and Long Reads: Twenty-three 

artificial datasets described by VanVinh, L. et al 

[11] were used, from which groups of reads were 

generated using the executable code of the BiMeta 

algorithm proposed in [11]. From these groups, 

4-mers frequency vectors of 136 dimensions are 

generated to determine the species belonging to some 

group. It was considered that each group belonged 

to the species of the first read entered in the seed 

subgroup, the proportions of groups with respect to 

the genomes that they represent are different from 

the reads, since a group can contain from 1 to 50 

different reads. The number of groups obtained 

from each artificial dataset and their distribution 

by genome is described in Table 2.

For the organization and format of the data, the 

software SPSS Statistics release 23.0.0.0 64-bit 

edition and arff Viewer of WEKA 3.8 [18] were 

used. Each dataset consists of a number of cases 

equal to the number of groups generated from the 

reads by the algorithm of BiMeta, retaining the 

name of the artificial dataset from which the reads 

come. Each case contains 138 attributes: the group 

number (from 0 to n, where n = number of groups), 

species of the group, and standardized frequencies 

of 4-mers for the whole group, labeled from f1 to 

f136 (see Table 3).

Evaluation Metrics: For the evaluation of the 

behavior of the algorithms for the classification 

of species, we used as metrics Accuracy, Recall, 

Precision and F-measure, calculated according 

to their standard definition [17]. In addition, the 

characterization of each cluster generated in terms 

of the measurement of Euclidean distances between 

the frequency vectors of each cluster was analyzed, 

assuming that the inter-cluster distance should be as 

large as possible and the lowest possible intra-cluster 

distance for 2 distinct clusters, generated from the 

same dataset by the same algorithm.

RESULTS

Table 4 summarizes the behavior of the two algorithms 

used to perform binning of the metagenomics data. 

The R1-R9 datasets contain long reads sequences, 

whereas the datasets L1-L6 and S1-S8 contain 

sequences of short reads.

According to these results it can be observed that 

both algorithms are competitive with each other for 

long reads datasets R3, R4, R5 and R8, and short 

reads datasets S6 and S7. For the case of the datasets 

R1, R2, R6 and R7 of long reads, and L1-L6, S1-S5 

and S8 of short reads, the algorithm Simple K-Means 

(SKM) outperformed the EM algorithm. That is, in 

the case of datasets with long reads, in 50% of them 

SKM outperforms EM, while in the remaining 50% 

both algorithms present competitive results without 

Table 1. Articles of binning methods using 136-dimensional 4-mers frequency vectors.

Software Name Clustering method Autors Year Ref.

Metawatt
Interpolated Markov 

models

Marc Strous; Beate Kraft; Regina Bisdorf; Halina E. 

Tegetmeyer
2012 15

CONCONT Gaussian mixture model

Johannes Alneberg; Brynjar Smari Njarnason; Ino de 

Brujin; Melanie Schirmer; Joshua Quick; Umer Z Ijaz; 

Leo Lathi; Nicholas J Loman; Anders F Anderson; 

Christopher Quince

2014 14

MaxBin Expectation maximization
Yu-Wei Wu; Yung-Hsu Tang; Susannah G Tringe; Blake 

A Simmons; Steven W Singer
2014 13

MaxBin 2.0 Expectation maximization Yu-Wei Wu; Blake A Simmons; Steven W Singer 2015 10

BiMeta K-means
Le Van Vinh; Tran Van Lang; Le Thanh Binh; Tran 

Van Hoai
2015 11

No name
Support vector domain 

description models
Hou Tao; Liu Yun; Liu Fu; Wang Ke; Xie Jian 2015 12
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Table 2. Description of datasets used in this work, including datasets of groups of reads.

Dataset Number of genomes Number of reads Genomer ratio Number of groups Genome Ratio

R1 2 82960 1:1 3171 1:1
R2 2 77293 1:1 1010 1:1
R3 2 93267 1:1 3895 1:1
R4 2 33457 1:1 1049 1:1
R5 2 40043 1:1 1337 1:1
R6 2 70550 1:1 2781 1:1
R7 3 290473 1:1:8 5842 1:1:1
R8 3 374830 1:1:8 8887 1:3:4
R9 6 588258 1:1:1:2:14 15225 1:1:1:3:4:4
L1 2 176688 1:1 3414 1:1
L2 2 259568 1:2 3362 1:1
L3 2 342448 1:3 3475 1:1
L4 2 425328 1:4 3555 1:1
L5 2 508209 1:5 3651 1:1
L6 2 591089 1:6 3665 1:1
S1 2 96367 1:1 1299 1:1
S2 2 195339 1:1 2481 1:2
S3 2 338725 1:1 3936 1:3
S4 2 375302 1:1 4784 1:5
S5 3 325400 1:1:1 4193 1:2:2
S6 3 713388 1:2:3 6546 1:2:5
S7 5 1653550 1:1:1:4:4 9852 1:2:2:3:3
S8 5 456224 3:5:7:9:11 12267 1:3:3:3:5

Table 3. Example of a dataset of group of reads, represented as frequency vectors.

Group Specie f1 f2 f3 f4 f5 f6 f7 f8 f9 … f136

0 specie1 0.018 0.000 0.008 0.010 0.005 0.008 0.022 0.017 0.013 … 0.004

1 specie2 0.012 0.000 0.009 0.013 0.006 0.007 0.031 0.014 0.013 … 0.006

a statistically significant difference between them, in 

terms of the metrics used for evaluation. In general, the 

datasets with more than 3 species generated a results 

under 50% in F-measure for both algorithms, reaching 

the point where the amount of cluster generated by 

the algorithms was less than the amount of species 

existing in the dataset.

When viewing the results of Table 4 in the form 

of line graphs, we see a trend of SKM to present 

slightly higher results than those of EM for F-measure 

(Figure 1) and for Accuracy (Figure 2), mainly in 

datasets L1 to L6, where the vertical lines represent 

the standard deviation.

Table 5 shows the intracluster and intercluster 

distance obtained for the different datasets used, 

for both algorithms. The intracluster distance is 

a quantitative measure of the degree of average 

closeness of the cases in each group. The clustering 

algorithms try to minimize this value. In contrast, 

the intercluster distance is a quantitative measure of 

the degree of average remoteness of the centroids of 

the different groups. Clustering algorithms attempt 

to maximize this value. When measuring the mean 

intracluster and intercluster Euclidean distance, 

for both EM and SimpleKMeans, two datasets 

showed statistically significant differences for the 

intracluster distance (R3 and S6) and a dataset 

presented a statistically significant difference in 

its intercluster distances (S5). This means that, in 

general, in terms of cohesion (intracluster distance) 

and coupling (intercluster distance) of clusters 

resulting from both algorithms, no statistically 

significant differences were found between the two 

algorithms. It should be noted that the calculation 

of the Euclidean intercluster distance in datasets 

with only two clusters is a simple summation of 

the distances of each of the frequencies that make 

up the vector of 4-mer frequencies of each cluster, 

therefore this does not present sufficient information 

to calculate a standard deviation
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Table 4. Results of specie classification based on Simple K-means and EM algorithms, over 23 synthetic 

datasets. R1-R9 correspond to datasets of long reads; S1-S8 and L1-L6 correspond to datasets 

of short reads.

Data-

set
Groups Species

SimpleKMeans algorithm Expectation Maximization algorithm

Accuracy

Mean 

precision ±

standard 

deviation 

Mean 

Recall ±

standard 

deviation 

Mean 

F-measure ±

standard 

deviation 

Accuracy

Mean 

precision ±

standard 

deviation 

Mean 

Recall ±

standard 

deviation 

Mean 

F-measure ±

standard 

deviation 

R1 3171 2 0.928 0.933 ± 0.07 0.929 ± 0.08 0.928 ± 0.06 0.771 0.839 ± 0.22 0.774 ± 0.32 0.757 ± 0.23

R2 1010 2 0.831 0.830 ± 0.01 0.830 ± 0.03 0.830 ± 0.02 0.534 0.526 ± 0.03 0.522 ± 0.28 0.487 ± 0.16

R3 3895 2 0.823 0.824 ± 0.05 0.824 ± 0.05 0.823 ± 0.04 0.808 0.808 ± 0.04 0.809 ± 0.03 0.808 ± 0.03

R4 1049 2 0.994 0.994 ± 0.00 0.994 ± 0.00 0.994 ± 0.00 0.995 0.995 ± 0.01 0.995 ± 0.01 0.995 ± 0.01

R5 1337 2 0.975 0.975 ± 0.01 0.974 ± 0.01 0.974 ± 0.01 0.980 0.980 ± 0.00 0.980 ± 0.00 0.980 ± 0.00

R6 2781 2 0.968 0.964 ± 0.04 0.972 ± 0.03 0.967 ± 0.03 0.818 0.847 ± 0.21 0.844 ± 0.22 0.818 ± 0.18

R7 5842 3 0.737 0.744 ± 0.22 0.753 ± 0.18 0.710 ± 0.18 0.612 0.608 ± 0.14 0.691 ± 0.28 0.605 ± 0.20

R8 8887 3 0.920 0.910 ± 0.03 0.889 ± 0.10 0.895 ± 0.07 0.934 0.907 ± 0.09 0.948 ± 0.08 0.922 ± 0.08

R9 15225 6 0.823 0.755 ± 0.38 0.716 ± 0.39 0.011 ± 0.37 0.754 0.723 ± 0.41 0.664 ± 0.38 0.693 ± 0.38

L1 3414 2 0.973 0.973 ± 0.07 0.972 ± 0.01 0.973 ± 0.08 0.524 0.512 ± 0.05 0.510 ± 0.28 0.469 ± 0.16

L2 3362 2 0.977 0.976 ± 0.02 0.977 ± 0.01 0.976 ± 0.01 0.902 0.921 ± 0.10 0.893 ± 0.14 0.898 ± 0.10

L3 3475 2 0.979 0.979 ± 0.02 0.980 ± 0.02 0.979 ± 0.01 0.899 0.916 ± 0.10 0.895 ± 0.14 0.897 ± 0.10

L4 3555 2 0.976 0.976 ± 0.02 0.977 ± 0.02 0.976 ± 0.02 0.899 0.915 ± 0.11 0.896 ± 0.14 0.897 ± 0.10

L5 3651 2 0.975 0.975 ± 0.02 0.976 ± 0.02 0.975 ± 0.02 0.899 0.913 ± 0.10 0.896 ± 0.13 0.897 ± 0.09

L6 3665 2 0.973 0.973 ± 0.01 0.973 ± 0.01 0.973 ± 0.01 0.897 0.910 ± 0.11 0.896 ± 0.13 0.896 ± 0.10

S1 1299 2 0.978 0.978 ± 0.01 0.979 ± 0.01 0.978 ± 0.01 0.850 0.880 ± 0.17 0.857 ± 0.20 0.848 ± 0.15

S2 2481 2 0.839 0.831 ± 0.06 0.835 ± 0.03 0.832 ± 0.04 0.576 0.535 ± 0.12 0.529 ± 0.32 0.472 ± 0.20

S3 3936 2 0.965 0.945 ± 0.07 0.971 ± 0.02 0.957 ± 0.04 0.818 0.797 ± 0.29 0.875 ± 0.17 0.798 ± 0.20

S4 4784 2 0.986 0.963 ± 0.05 0.986 ± 0.00 0.974 ± 0.03 0.991 0.980 ± 0.02 0.988 ± 0.01 0.984 ± 0.02

S5 4193 3 0.815 0.815 ± 0.05 0.808 ± 0.15 0.802 ± 0.10 0.608 0.568 ± 0.26 0.602 ± 0.35 0.459 ± 0.28

S6 6546 3 0.986 0.987 ± 0.00 0.975 ± 0.03 0.981 ± 0.02 0.989 0.987 ± 0.01 0.984 ± 0.01 0.985 ± 0.01

S7 9852 5 0.559 0.506 ± 0.26 0.582 ± 0.38 0.197 ± 0.31 0.527 0.469 ± 0.25 0.540 ± 0.39 0.306 ± 0.31

S8 12267 5 0.579 0.618 ± 0.20 0.598 ± 0.28 0.496 ± 0.23 0.536 0.546 ± 0.15 0.545 ± 0.29 0.443 ± 0.22

Figure 1. F-measure measurement for each dataset with the SimpleKMeans and 

Expectation Maximization algorithms.
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Table 5. Comparison of resulting clusters generated by K-means and EM algorithm, based on the 

intracluster and intercluster average distance.

Dataset Clusters

SimpleKMeans algorithm Expectation Maximization algorithm

Mean IntraCluster 

Distance ± 

standard deviation

Mean InterCluster 

Distance ± 

standard deviation

Mean IntraCluster 

Distance ± 

standard deviation

Mean InterCluster 

Distance ±

standard deviation

R1 2 0.0252541 ± 0.0085317 0.0156655 0.0270378 ± 0.0007638 0.0206100 

R2 2 0.0259683 ± 0.0122143 0.0101579 0.0205995 ± 0.0005631 0.0213644

R3 2 0.0874562 ± 0.0086373 0.0280106 0.0287656 ± 0.0001663 0.0279549

R4 2 0.0272987 ± 0.0002738 0.0346150 0.0272654 ± 0.0007450 0.0347295 

R5 2 0.0995836 ± 0.0212610 0.0351438 0.0997911 ± 0.0214979 0.0352843

R6 2 0.0294728 ± 0.0102472 0.0346440 0.0294728 ± 0.0102472 0.0346440

R7 3 0.0323306 ± 0.0085582 0.0346425 ± 0.0125191 0.0336210 ± 0.0026424 0.0351133 ± 0.0096335 

R8 3 0.0299328 ± 0.0116063 0.0771026 ± 0.0314250 0.0317694 ± 0.0065680 0.0738762 ± 0.0300574 

R9 6 0.0336484 ± 0.0045021 0.0572017 ± 0.0176787 0.0323857 ± 0.0062913 0.0598808 ± 0.0204103 

L1 2 0.1571469 ± 0.0242263 0.0031724 0.1526578 ± 0.0530349 0.0406151 

L2 2 0.1543704 ± 0.0370218 0.0348746 0.1494912 ± 0.0466247 0.0407553 

L3 2 0.1545883 ± 0.0351402 0.0345795 0.1495891 ± 0.0464405 0.0409151

L4 2 0.1546097 ± 0.0361639 0.0346760 0.1491224 ± 0.0487726 0.0406383 

L5 2 0.1526745 ± 0.0379499 0.0341652 0.1470982 ± 0.0479603 0.0405508

L6 2 0.1541340 ± 0.0356566 0.0343172 0.1490432 ± 0.0440333 0.0407737

S1 2 0.0665941 ± 0.0174995 0.0379279 0.0635155 ± 0.0029405 0.0474583

S2 2 0.0666234 ± 0.0305250 0.0058861 0.0607143 ± 0.0015441 0.0237358 

S3 2 0.0740767 ± 0.0217884 0.0467122 0.0605464 ± 0.0028861 0.0691053 

S4 2 0.0587966 ± 0.0011660 0.1016099 0.0585097 ± 0.0027094 0.1000344

S5 3 0.0460514 ± 0.0287384 0.0288425 ± 0.0126795 0.0373041 ± 0.0019136 0.0959204 ± 0.0358429 

S6 3 0.0401389 ± 0.0007670 0.0386924 ± 0.0132037 0.0379667 ± 0.0005475 0.0944913 ± 0.0347768 

S7 5 0.0361684 ± 0.0297462 0.0254207 ± 0.0135238 0.0298624 ± 0.0169002 0.0370670 ± 0.0142258 

S8 5 0.0361684 ± 0.0297462 0.0254207 ± 0.0135238 0.0298624 ± 0.0169002 0.0370670 ± 0.0142258

Figure 2. Accuracy measurement for each dataset with the SimpleKMeans and Expectation 

Maximization algorithms.
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When visualizing the results of table 5 in the form 

of line graphs, we do not observe distinctly different 

results between the intracluster distance for both 

algorithms (Figure 3), except for datasets R3 and 

S4, in which SKM is shown to be significantly 

higher, presenting a smaller distance between the 

data present in each cluster. On the other hand, the 

EM algorithm generated clusters with an intercluster 

distance slightly superior to the clusters generated 

with SKM (Figure 4). However, these results are 

not decisive because they do not have enough 

information to calculate if they are significantly 

different from each other

CONCLUSIONS AND FUTURE WORK

This article presents empirical results to establish a 

baseline regarding the application of unsupervised 

learning methods to perform the binning task in the 

classification of metagenomic data. The data used to 

evaluate the K-means and EM algorithms correspond 

to 9 datasets of long reads sequences and 14 datasets 

of short reads sequences, both types of data were 

generated in a synthetic way. The preprocessing 

considered the calculation of repeating frequency 

vectors of sequences of characters of a long l.

The application of the datasets to both clustering 

algorithms resulted in a partition of the frequency 

vectors representing a group of reads that was 

evaluated in terms of the cohesion and coupling 

of the clusters generated by each algorithm and in 

terms of accuracy, Precision, recall, and F-measure. 

Regarding the evaluation in terms of cohesion and 

coupling, although there are differences between 

the average values generated by both methods, 

these differences are not statistically significant, 

indicating that in terms of these two properties 

(cohesion and coupling) of the Clusters generated 

both algorithms are competitive with each other. 

Regarding the classification of the reads groups in 

their corresponding species, the K-means algorithm 

presented a superior behavior with respect to the 

EM algorithm, in particular for sequences of short 

reads. For long reads sequences both algorithms 

were generally competitive with each other.

One of the limitations of these algorithms, when 

evaluating metrics such as Recall, Precision, Accuracy 

and F-measure, is the dependence on the correct 

prior classification of the data. In this case, it is 

possible to improve the quality of the evaluations by 

considering the number of reads that are contained in 

each group generated by the BiMeta algorithm [11], 

used to generate the frequency vectors associated 

with each group.

This work is part of the previous analysis of the 

behavior of non-supervised clustering algorithms for 

the grouping of readings coming from metagenomes, 

with the subsequent objective of being compared 

empirically with semi-supervised methods as 

part of a research in development. Thus, along 

with extending the empirical evaluation to other 

unsupervised algorithms, a semi-supervised approach 

will be designed which is expected to be better in 

this domain and competitive in others with respect 

to the results obtained with the algorithms included 

in the baseline.

Figure 3. Measurement of the intracluster distance 

for each dataset with the SimpleKMeans 

and Expectation Maximization algorithms, 

vertical lines represent the standard deviation.

Figure 4. Measuring the intercluster distance for 

each dataset with the SimpleKMeans and 

Expectation Maximization algorithms, 

the vertical lines represent the standard 

deviation.Maximization algorithms, vertical 

lines represent the standard deviation.
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