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ABSTRACT

The rotational inverted pendulum or Furuta Pendulum is a mechatronic system used by control engineers 

to explore a various dynamic modeling and control schemes. Due to its nonlinear nature, open-loop 

instability, and because it is an under-actuated system (more degrees of freedom than actuators), which 

is the basis for the design of vehicles such as the Segway, the self-balancing scooter, hoverboard, or self-

balancing board, among others. The authors present a model for the Furuta Pendulum using the equations 

of Euler-Lagrange and the methodology to identify a black-box model by training an NNARMAX 

(Neural Network Auto-Regressive Moving Average with exogenous inputs). The results show that two 

interconnected MISO-NNARMAX estimates 10-step-ahead predictions accurately for the horizontal 

and vertical angles.

Keywords: Neural networks, Furuta pendulum, system identification, NN-ARMAX modeling.

RESUMEN

El péndulo invertido rotacional o péndulo de Furuta es un sistema mecatrónico usado por los ingenieros 

de control para explorar una variedad de modelos dinámicos y sistemas de control debido a su naturaleza 

no lineal, inestabilidad en lazo abierto y porque es un sistema que posee mas grados de libertad que 

actuadores, por lo que es la base para el diseño de vehículos como el segway, la tabla de dos ruedas 

autoequlibrada, aeropatín o tabla flotante entre otros. Los autores presentan un modelo para el péndulo 

de Furuta usando las ecuaciones de Euler-Lagrange y una metodología para identificar un modelo de caja 

negra entrenando una NNARMAX (por sus siglas en inglés, Red Neuronal para un Modelo Autoregresivo 

de Media Movil con Entrada Externa). Los resultados muestran que dos modelos MISO-NNARMAX 

interconectados estiman de forma precisa predicciones de 10 pasos adelante para los angulos vertical 

y horizontal.
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INTRODUCTION

The main objective of this project is to identify a 

neural network model of a nonlinear mechatronic 

system, the Furuta pendulum; several aspects of 

the mechanism must be kept under consideration, 

aspects which make this specific system to be used 

vastly in research dealing with modeling and control 

strategies for mechatronic systems [1] but there is 

no information about a Neural Network Armax 

Model applied to this mechatronic system. There 

are several works on Furuta Pendulum; the authors 

in [2] study anti-swing controllers for the nominal 

and disturbed system, they propose a combination 

of collocated partial feedback linearization and 

hierarchical sliding mode control inside a two-loop 

controller. The authors in [3] developed a control 

for the Furuta pendulum utilizing on–off-type cold 

gas thrusters as the actuators and an observer-based 

state feedback controller. Balancing robotic systems 

is an important topic in robotics [4, 5].

In this way, the most classic is the inverted pendulum 

problem [6] and variations like the Furuta pendulum 

[7, 8], and the one or two reaction wheel pendulum 

[4, 9] where there is a reaction torque on the wheels 

to balancing the pendulum. The authors in [10] 

also developed a 3-D reaction wheel cube inverted 

pendulum, known as Cubli, previously worked by 

the authors in [11].

All the work developed in the balance of robotic 

systems, taking the theory behind the inverted 

pendulum and inverted rotary pendulum, has allowed 

its use in space systems and satellites [12, 13, 14], 

in motorcycle systems stabilization [15], in bipedal 

robot systems [16], in the famous conveyance 

known like segway [17, 18, 19] and [20], this is a 

two wheels self-balancing system.

The first aspect to be considered is that the Furuta 

pendulum is a challenging stabilization problem 

due to its unstable dynamics, nonlinearities, and 

especially the fact that it is an under-actuated system 

[21]. The Lagrange method has had broad use in 

developing dynamic models as observed in [22] and 

the literature contained within. The present work 

develops two mathematical models of the Furuta 

pendulum; the first is the analytical model based 

on the equations of motion, and the second is a 

black-box model, where there is extensive research 

in neural networks. They are bioinspiration for the 

development of engineering and used for parameter 

estimation [23]. Therefore, they will be used to 

adjust the ARMAX model. The paper is organized 

as follows: Section 2 describes the Furuta pendulum, 

the equations of motion are obtained analytically 

using the Lagrangian formulation. Also, the structure 

and training method for the neural network model 

is developed. Section 3 presents the neural network 

ARMAX model by training and validating the 

parameters with experimental data. Finally, section 

4 shows some conclusions.

METODOLOGY

The Furuta pendulum setup

A simple description of the Furuta pendulum is that 

of a rigid rod of length L1, connected at the end 

with another rod of length L2, and attached to the 

end of this last rod; there is a point mass m.

The first rod is driven by an electric motor of Torque 

Tm in a plane which we might call the horizontal 

plane since its most of the time perpendicular to 

our standing up position. The second rod can spin 

around the point of contact of the first rod only 

in a plane perpendicular to the horizontal plane, 

see Figure  1. The pendulum designed by the 

Reliability Engineering at the Hamburg University 

of Technology is actuated with a Maxon RE36 70 

W-brushed DC motor, which can provide a torque 

of 77,1 mNm with a maximum nominal current of 

1,82 A. A current controller drives the motor with 

a Maxon LSC 4-Q-DC servo amplifier. An encoder 

of reference Avaco-HEDS-5540#A06 mounted in 

the axis is used to measure the motor angle and 

has a resolution of 500 Pulses per Revolution 

(PPR). The pendulum angle β is measured by an 

incremental encoder reference Kubler-2400, with 

Figure 1. Furuta pendulum.
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a resolution of 1024 PPR. The pendulum control is 

performed using hardware from dSpace, specifically 

the CLP1103 Connector Panel, a DS1103 Control 

Card installed in the Host-PC, and the software 

dSpace ControlDesk. The measured angles are 

transmitted through this interface as well as the 

current controller setpoints. The controller for the 

pendulum is implemented in Simulink, and the 

execution in real-time using ControlDesk. From an 

inspection of the mechanical system, the system has 

a stable position or stable equilibrium state when  ̇=0 

and β=∓π, with the pendulum hanging down and 

in the absence of movement. Within control theory, 

it is the objective for a controller to stabilize the 

pendulum at the upright state given by β = 0 and 

any horizontal angle, as shown in Figure 2.

Equations of motion using the Lagrangian method

The Euler-Lagrange (E-L) method takes advantage 

of the principle of stationary action and is used in 

this section to obtain the equations of motion for the 

Furuta pendulum. First, the Lagrangian is defined as the 

kinetic energy, T, minus the system’s potential energy, 

U, expressed in generalized coordinates, L = K-U. 

The E-L equations take the following form eq (1):

d

dt

∂L
∂ !qi

⎛

⎝
⎜

⎞

⎠
⎟=

∂L
∂qi

+Q (1)

Where q_i represents the generalized coordinates, 

and the last term stands for the generalized forces, 

i.e., the projection of the active forces onto the 

generalized coordinates direction. For a point r of 

the pendulum in the coordinate system shown in 

Figure 1, the position can be expressed as eq (2):

!
r =

r1 cos α( )+ r2 sin α( )sin β( )

r1 sin α( )+ r2 cos α( )sin β( )

r2 cos β( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,

r2 = 0   0 ≤ r1 < l1
r1 = l1    0 ≤ r2 < l2

⎧
⎨
⎪

⎩⎪

(2)

Where r1 and r2 are the distances for the first and 

second link, respectively, measured from the center 

of rotation. The velocity is obtained with the time 

derivative eq (3):

!
v =

d
!
r

dt
=

−r
1
"α cos α( )sin β( )+ r2 "α cos α( )sin β( )+ r2 "β sin α( )cos β( )

r
1
"α cos α( )+ r2 "α sin α( )sin β( )− r2 "β cos α( )cos β( )

r
2
"β sin β( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

(3)

The kinetic energy is obtained by adding the 

contributions of the motor-encoder pair, both links, 

and the mass eq (4):

K
s
= K

m−e +Kl
1
+K

l
2
+K

m
. (4)

Each of these terms is calculated using the following 

definition for the kinetic energy eq (5):

K =
1

2

!
v∫ ⋅
!
v  dm, (5)

And the squared velocity term as eq (6):

v r1,r2( )
2
=
!
v ⋅
!
v = r1

2
+ r2

2
sin

2 β( )( ) !α2

−2r1r2 !α !β cos β( )+ r2
22 !β 2 .

(6)

For the motor and encoder eq (7):

K
m−e =

1

2
J
m−e( ) !α2 (7)

For the first link eq (8):

K
l
1
=
1

2
r
1

2

0

l
1∫ !α2

m
l
1

l
1

ds =
1

6
m
l
1
l
1

2 !α2 (8)

For the second link eq (9)- eq (11):

K
l2
=
1

2
l1
2
+ r2

2
sin

2 β( )⎡
⎣

⎤
⎦ !α

2

0

l2∫

−2l1r2 !α !β cos β( )+ r2
2⎤
⎦
m
l2

l2

ds,

(9)

Figure 2. TUHH Furuta pendulum.
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k
l2
=
1

2

m
l2

l2

l1
2
l2 +

l2
3

3
sin

2 β( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ !α

2
⎡

⎣
⎢
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−l1l2
2 !α !β cos β( )+

l2
3

3

!β cos β( )+
l2
3

3

!β 2
⎤

⎦
⎥,

(10)

K
l2
=
1

2
m
l2

l1
2
+
l2
2

3
sin

2 β( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ !α

2
⎡

⎣
⎢
⎢

−l1l2 !α !β cos β( )+
l2
2

3

!β 2
⎤

⎦
⎥,

(11)

and for the mass eq (12):

K
M
=
1

2
M + −l

1

2
+ l
2

2
sin

2 β( )( )⎡
⎣ !α2

−2l
1
l
2
!α !β cos β( )+ l2

2 !β 2⎤⎦.

(12)

The potential energy is obtained by adding the 

contributions of the motor-encoder pair, both links 

and the mass eq (13):

U
s
=U

m−e +Ul1
+U

l2
+U

M
, (13)

Each of these terms is calculated using the following 

definition for the potential energy eq (14):

U = g
!
rz∫ dm. (14)

For the motor and encoder eq (15):

u
m−e − 0, (15)

For the first link eq (16):

U
l1
= 0, (16)

For the second link eq (17):

Ul2
=
1

2
ml2

gl2 cos β( ), (17)

And for the mass eq (18):

Um =Mgl2 cos β( ). (18)

For the Lagrangian of the system, Ls = Ks – Us, the 

E-L equations are eq (19)- eq (20):

d

dt

∂L
s

∂ !α
⎛

⎝
⎜

⎞

⎠
⎟=

∂L
s

∂α
−T

m
−b1 !α, (19)

And

d

dt

∂L
s

∂ !β

⎛

⎝
⎜

⎞

⎠
⎟−b2 !β, (20)

where the terms b1 and b2 account for a viscous 

friction model. Solving the differentials concerning 

velocities and angles for the Lagrangian eq (21):

Ls = Jm−e( ) !α2 +
1

6
ml1
l1
2 !α2

+
1

2
ml2

l1
2
+
l2
2

3
sin

2 β( )
⎛

⎝
⎜⎜
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l2
2

3

!β 2
⎤

⎦
⎥
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+
1

2
M l1

2
+ l2

2
sin

2 β( )( ) !α2 − 2l1l2 !α !β cos β( )+ l2
2 !β 2⎡

⎣
⎤
⎦

−
1

2
ml2

gl2 cos β( )−Mgl2 cos β( ),

(21)

And defining eq (22)-(25):

α = J
m−e +

1

3
m
l1
l1
2
+m

l2
l1
2
+Ml1

2
, (22)

b = m
l2

l2
2

3
+Ml2

2
, (23)

c =
1

2
m
l2
l1l2 +Ml1l2 , (24)

d =
1

2
ml

2
gl
2
+Mgl

2
. (25)

Replacing eq (22)- eq (25) in the L-E equations 

yields the following equation of motion in matrix 

form eq (26):

a+bsin
2 β( )   − ccos β( )

−ccos             β( )b

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
!!α
!!β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

2bsin β( )cos β( ) !β

−bsin β( )cos β( ) !α
c !β sin β( )

0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
!!α
!!β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
0

−d sin β( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

T
m
−b1 !α

−b2
!β

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
,

(26)

Or eq (27):

D
!!α
!!β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+C

!α
!β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ g = F, (27)

Which can be arranged in the following form to 

implement it as an S-Function in Simulink (28):

!!α
!!β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= D

−1
F −C

!α
!β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− g

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟,

(28)
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Or eq (29):

d

dt

!α
!β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=

1

a+bsin
2 β( )( )

.
b

ccos β( )

ccos β( )

a+bsin
2 β( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥⋅

T
m
−b

1
!α

−b
2
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

2bsin β( )cos β( ) !β

−bsin β( )cos β( ) !α
c !β sin β( )

0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

!α
!β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

0

−d sin β( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎤

⎦

⎥
⎥
.

(29)

The values in Table 1 can be used to simulate the 

Furuta pendulum. These values were obtained 

experimentally and with the manufacturer’s 

specifications [1].

From a superficial inspection of the equations, 

nonlinearities become evident; analyzing these 

nonlinearities escapes the scope of this work. If the 

reader wants to investigate the phase portraits of a 

controlled Furuta pendulum, [2] is an informative 

source.

System identification

The usefulness of mathematical models in science 

is unprecedented. The increase in computational 

power and the expansion of common knowledge have 

brought new ways to attempt to grasp the essence 

of what is perceived and be able to study it and take 

advantage of this knowledge. The basic idea behind 

the System Identification Theory is that a pattern 

is inferred based on observations of a system, and 

a mathematical model of the dynamic system can 

be found. The theory has been applied to biological 

systems, population growth, market prediction, 

or what is of interest in this work, mechatronic 

systems. A system is such an object that upon an 

input produces an output that is measured and 

known at specific instants of time. Furthermore, 

the term dynamic describes that the actual output 

is dependent not only on previous inputs but also 

on past states of the system. Ljung, one of the most 

read researchers in the area, defines three primary 

entities in the system identification procedure: A 

data set, a Model Structure, and a rule to assess 

the candidate models [24]. The first one refers to 

the input-output data recorded from an experiment 

on the system. The set of models is the definition 

of the mathematical precepts that every candidate 

follows, i.e., a domain in which the desired solution 

lies; and finally, the rule is the way to identify the 

best model for that system.

The field of Identification of Linear systems is 

particularly advanced, but the identification of 

nonlinear systems is still an area of active research. 

Considering that most, if not all, real systems are 

nonlinear, there has been a growing interest in the 

field of nonlinear system identification. Initially, 

researchers stressed the connection between 

biological neural networks and the idea of learning. 

What the pioneers sought was, as stated by [25], 

“A computer program that was able to learn from 

experience”. As the NN research progressed, it 

has shown interesting features to map nonlinear 

behavior from observations.

Overview of the neural network theory

A neural network is an interconnected set of individual 

neurons, which take a finite number of inputs and 

weights them; then, it applies a function over the 

summation to give the output (see Figure 3). The 
Table 1. Specifications adopted for the simulated 

Furuta pendulum.

Symbol Value Units

Jm–e 6.75 x 10–6 kg m2

ml1
0,27 kg

l1 0.205 m

ml2
0.09 kg

l2 0.208 m

M 0.05 kg

g 9.81 m/s
2

b1 0.003 Nms/rad

b2 0.00088 Nms/ra Figure 3. Neuron model.
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Multilayer Perceptron (MLP) is a structure of neural 

network vastly used in the literature, in which layers 

of neurons are organized, letting the result of the first 

layer be the input of the subsequent hidden layers 

until the outer layer. In a two-layer perceptron Sig-

Lin NN, the input layer uses a sigmoid averaging 

function (fsig) and the second layer uses a linear 

averaging function (Flin), which is the architecture 

utilized in this work.

 

In [25], the output of a fully connected MLP is 

expressed as follows eq (30):

ŷi t( ) = gi ϕ ,θ[ ] = Flin

Wi, j fsig

j=1

nh

∑ w j, lϕl
l=1

nϕ

∑ +w j, 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟+Wi, 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(30)

Where is a parameter vector containing the weights 

and biases for both layers to be found (this can be 

defined as θ = w j, l  w j, 0  wi, j  wi, 0
⎡⎣ ⎤⎦

T

); W for the 

output layer and w for the input layer; nh and nϕ 

are the number of neurons in the output and input 

layer respectively. The inputs are defined by ϕ, and 

the output is ŷi t( ).  For further detailed concepts 

on the theory behind the equation (30) and Neural 

Networks, the reader can consult [25].

The Levenverg-Marquardt algorithm

The problem of identifying the optimal weights of 

the neural network for a specific set of Input-Output 

Data is to find a mapping function from the data set 

to set of candidate models, to find a model which 

can provide predictions of future outputs which 

are in some sense close to the real outputs of the 

system. In formal terms, according to [25], the 

mapping function is defined by eq (31):

Z
N
= u t( ), y t( )⎡⎣ ⎤⎦,T =1,…,N{ }

y t( ) = ŷ t θ( )+ e t( ) = g t,θ[ ]+ e t( )

Z
N → θ̂

(31)

To measure the closeness of the predicted and the real 

outputs, a mean square criterion is often used eq (32):

VN θ ,ZN( ) =
1

2N
y t( )− ŷ t( )⎡⎣ ⎤⎦

2

t=1

N

∑ (32)

To solve this optimization problem for this specific 

work, the Levenberg-Marquardt Algorithm is 

employed, in which a Gauss-Newton method is used 

with a slight modification of the search direction. 

The problem and update rule for the determination 

of the weights is given by the following equations eq 

(33)- eq (34), for a more detailed approach look [26].

θ i+1( )
= argmin

θ
L
i( ) θ( )

Subject θ −θ i( ) ≤δ i( )

(33)

θ i+1( )
=θ i( )

+ f
i( )

R θ i( )( )+λ i( )
I

⎡
⎣⎢

⎤
⎦⎥ f

i( )
= −G θ i( )( )

(34)

One of the problems found when training an NN 

is the bias/variance dilemma, which states that 

the bias error; due to insufficient model structure 

decreases as more weights are added to the structure. 

However, the variance error grows in the other 

direction since the function approximated by the 

network deviated from the real function. One way 

to face this problem is using an additional term in 

the optimization criterion in this case eq (35):

WN θ ,ZN( ) =
1

2N
y t( )− ŷ t( )⎡⎣ ⎤⎦

2
+
1

2N
θTDθ

t=1

N

∑ (35)

Where D is often selected as D = d I. The term d 

represents the weight decay, and again the choice 

of this tuning knob is grossly heuristic.

It is important to consider that training a Multiple 

Input Multiple Output (MIMO) system is much more 

involved. Considerations of the covariance matrix 

have to be included to treat the model as a whole; 

nonetheless, a Multiple Input Single Output (SIMO) 

model was obtained in this work. For the Furuta 

pendulum, two neural networks will be trained, each 

of which will use two different control inputs, being 

one of them the Torque signal and the other one being 

the past values of the other output, respectively, in 

other words, for the Neural network that obtains the 

predictions for the horizontal angle eq (36):

u t( ) =
Tm t( )

β t( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
,

y t( ) = α̂ t( )⎡⎣ ⎤⎦,

εα t −1( ) = α t −1( )−α̂ t −1( )⎡⎣ ⎤⎦.

(36)

And a Neural network that obtains the predictions 

for the vertical angle eq (37):
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u t( ) =
Tm t( )

α t( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
, y t( ) = β t( )⎡⎣ ⎤⎦,

εβ t −1( ) = β t −1( )− β̂ t −1( )⎡
⎣

⎤
⎦.

(37)

Once both models are identified (eq (36) and eq(37)), 

they are combined into a SIMO system.

Validation, examining correlations

In this stage, a validation of the model is performed 

using a test dataset, which was not included in the 

training set. This procedure aims to ensure that 

the Neural Network can simulate the system when 

new data is presented. One of the tests carried out 

consists of visualizing the network’s predictions 

either for the next value or several time steps ahead, 

also known as k-step ahead prediction. The other 

test is to guarantee a small correlation between 

the prediction errors and the control input and 

output signal respectively. If the NN captures all 

the system’s dynamic behavior, then there should 

not be any correlation.

Application to Furuta pendulum model

This work follows a black-box modeling paradigm, 

where the estimation is based purely on information 

retrieved from the system. Nonetheless, the order 

of the differential motion equations was used to 

determine the number of neurons on the network. 

The methodology followed to achieve the model 

estimation was the one described in [25]. The 

experiment was the procedure with which the Set 

of Training and Evaluation Data were retrieved 

from the system; it would be approached in the 

next section. The Model Structure selected was 

an NNARMAX Model. Consequently, a mixed 

Estimation and Validation iteration was initiated 

until a satisfactory Neural Network model of the 

pendulum dynamics was obtained.

The following sections describe and discuss the 

procedure briefly. In [27], a detailed description 

of a common framework is given for many model 

structures and other Nonlinear Black-Box Modelling 

considerations. Two different experimental setups are 

arranged, and both correspond to a direct approach 

scheme, where the output of the process (in this 

case, the angles) and the input Torque are used, 

ignoring any possible feedback or reference signal; 

thus, being able to disregard the complexity of the 

regulator used in the closed-loop case. A schematic 

of this approach is shown in Figure 4 and Figure 5.

Figure 4 depicts the flow diagram of the closed-loop 

experiment. The nonlinear controller derived by Otto 

Figure 5. Open-loop experiment scheme.

Figure 4. Closed loop experiment scheme.
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is used to control the pendulum [1]. This controller 

has two different modes. The first one is a catching 

mode, in which the controller attempts to take the 

pendulum from the equilibrium state and increase its 

energy until it reaches an angular threshold, in this 

case just dependent on an angle. Once this energy is 

achieved, a linear controller takes over and maintains 

the pendulum on the unstable equilibrium position 

of β = 0. The other mode is the tracking mode; in 

this case, a reference signal is applied to either of 

the controlled angles. In this experiment, only the 

vertical angle was forced to follow a sinusoidal signal 

once stabilized. A perturbation signal was added to 

the Control Input to broaden the explored regions. 

The authors generated a sequence of multilevel 

pseudo-random signals (MLPrS) and used it during 

some parts of the closed-loop experiment. Figure 5 

shows the open-loop diagram. In this case, the input 

to the Torque was given by a Sequence of MLPrS.

These Experiments were carried out continuously and 

produced different sets of Data, which was examined 

to form the definite Training Data for the neural 

network. The final Experiment for Data Acquisition 

was automated on Control Desk by a Python Script.

It is worth mentioning at this point that an independent 

identification of each input-output combination is 

carried out, obtaining a SISO nonlinear model of each 

output referenced to the Input Torque. Afterward, 

both neural networks would be combined into a 

Single Input Multiple Output NNARMAX model.

Finally, there is one last consideration that will 

have a profound effect on the control system’s 

performance, the sampling Time Ts. The data is to 

be retrieved and sent to the system to decide with 

which frequency. The sampling time determines 

how often data is retrieved and sent to the system. 

Employing a series of heuristic sequences of steps 

with different amplitude and aperiodic triggering, 

the frequency range was explored between 1 and 6 

Hz. This range is where the natural frequencies of 

the pendulum are believed to lie. During this test, 

it was inferred that a sampling frequency of 50 Hz, 

i.e., Ts = 0.02 s, was enough for the neural network 

model to model the system’s dynamics.

Open and closed loop experiments

As stated, experiments have the difficult task of 

obtaining rich and enough data for the neural network 

to be able to learn or grasp the system’s behavior. 

The signals from the pendulum must cover the entire 

operating range, which is unfeasible since it would 

have to reach every possible position and velocity 

values. Thus, the training signal must be defined to 

extract as much information as possible by exciting 

the system. For this purpose, the authors conducted 

a mixture of open and closed-loop experiments, in 

which heuristic changes were applied to the torque 

signal to obtain the measurement data.

Open-loop experiments

The signal applied should be persistently exciting, 

i.e., the signal Tm(t) is persistently exciting of order 

n, if its spectrum Φu(w) is different from zero on 

at least n points in the interval –π < w ≤ π. One of 

the signals commonly used to identify nonlinear 

systems is a Multi-Level Pseudo-Random Sequence 

(MLPrS). The problem of applying this signal to the 

pendulum is that direct supervision must always take 

place during the experiment because it might lead 

to unstable behavior that could affect the integrity 

of the mechanical system. Obtaining information 

from the entire operation range is dubiously possible 

with a finite dataset.

Closed-loop experiments

In this case, the reference signal is zero, the 

controller uses a Lyapunov-based nonlinear Energy 

controller to swing up the pendulum, and then a 

linear controller catches and stabilizes the system 

near the unstable equilibrium point. Once the system 

is stabilized, a reference signal might be applied to 

the vertical angle.

Training and validation data obtained

In Figure 6, the Torque signal Tm is shown, including 

the open-loop and closed-loop data. The ranges that 

exhibit a high-frequency signal correspond to the 

closed-loop experiment, whereas the other regions 

contain the open-loop data. The open-loop data 

collected between 0 and 50 sec, used an MLPrS 

signal as Torque input to the system. Then the 

closed-loop controller was activated, raising the 

system’s energy until the linear controller would 

catch and stabilize it, between 50 and 100 sec. 

Subsequently, a sinusoidal reference signal to the 

Torque was given to the closed-loop system using 

the linear controller, as seen between 100 and 115 

sec, then after a brief stability period, a sinusoidal 

but noisy signal was fed to t.
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Figure 7 shows the data obtained from the experiment. 

This data would be extensively manipulated within 

the training of the neural network. The green line 

corresponds to the vertical Angle β. It is interesting 

to try to observe the behavior of the pendulum by 

reading the data; at the beginning, there are some 

oscillations around the stable origin, then suddenly 

and short after 60 s the pendulum turned once 

through the unstable equilibrium state, and then 

once the closed-loop was enabled the pendulum is 

stabilized at β = 0. Afterward, a series of open and 

closed-loop signals are applied until obtaining a 

complete set of samples.

Model structure definition and training of the 

neural network

In the introduction, the authors stated that the model 

structure to be used in the project is the NNARMAX 

architecture. First, a small description of the linear 

ARMAX model structure is given, and then the 

Neural Network Architecture is presented.

Armax model structure

A linear differential equation exists for a given linear 

system that describes the input-output relations 

between considering past values of both and a 

description of the disturbance entering the system.

In Figure 8, the linear case is depicted in the following 

considerations eq (38):

u k( ) =Tm k( ),

y k( ) =
α k( )

β k( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.

(38)

The disturbance e(k) is assumed to be a white 

noise signal filtered through H(z-1), which in this 

Figure 6. Input torque T_m (t).

Figure 7. Measured output angles.
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case would represent a model for this disturbance. 

Using the fact that the expectation of e(k) is zero 

because it is Gaussian distributed and uncorrelated 

white noise, a model for predicting future outputs 

might be encountered.

If the actual output of the system is given by eq (39):

y z( ) =G z
−1( )u z( )+H z

−1( )e z( ), (39)

Where eq (40):

G z
−1( ) = z−d

B z
−1( )

A z
−1( )
,

H z
−1( ) =

C z
−1( )

D z
−1( )
.

(40)

Now, the value of represents the time delay of the 

system, which in this work is assumed to be d = 1. 

The transfer function H(z–1) and its inverse are 

assumed to be stable. The polynomials A, C and D 

are monic, i.e., A(0) = C(0) = D(0) = 1. Furthermore, 

the transfer function G(z–1) is strictly proper G(0) = 

0; and the noise model H(z–1) is biproper H(0) = 1.

Considering the abovementioned assumptions, the 

error can be defined as follows eq (41):

e k( ) = y k( )− ŷ k k −1( ), (41)

Where ŷ k k −1( )  stands for the predicted output 

at time k, given values up to time k-1. To close the 

linear case discussion, the authors introduce the 

predictor form. Now the predicted output at time 

k is expressed in terms of past values of the control 

Input, output variables, as well as the transfer 

functions H and G, which can be better appreciated 

in the equation eq (42):

ŷ y k −1( ) = H −1
Gu k( )+ 1−H −1( ) y k( ). (42)

Now expanding the polynomials in time, the predictor 

form is encountered eq (43)- eq (45):

ŷ t θ( ) =ϕT
t,θ( )θ (43)

ϕ t,θ( ) = −y t −1( ),…,−y t − na( ),u t − d( ),⎡⎣

u t − d −1( )…,u t − d − nb( ),

e t −1θ( ),…e t − nc θ( )⎤⎦
T

(44)

θ = a1,…,anab1,…,bnb ,c1,…,cnc[ ] (45)

Equation (43) is known as the predictor form, where  

θ is a parameter vector containing the coefficients 

of the different polynomials and vector ϕ is the 

regression vector containing data from time up to 

t = k – 1.

NNARMAX model structure

The model structure for a NNARMAX is shown 

in Figure 9.

The number of past values is already introduced from 

input-output signals which are used in this project. 

In this case, na = nb = 4, the only value that was 

changed from this initial model structure, shown 

in Figure 9, once the network during training was 

the number of past values used in the error signal. 

Initially, nc = 4was selected but as it will be explored 

in the next section, using more repressors from the 

error signal caused poor performance of the learning 

process from the neural network.

With the Levenberg-Marquardt algorithm, a neural 

network of two layers can map any nonlinear function 

Figure 9. NNARMAX Structure.

Figure 8. ARMAX structure.
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provided the necessary set of training data. In this 

work, a slight modification of the model structure, 

taken from Werner [28] (see Figure 10), is used to 

identify the parameters during the training stage 

of the C polynomial that represents a noise model. 

This network performs a feedback-like procedure 

by using past values of the error.

Once the model structure is selected, the number 

of repressors used in the regression vector should 

be defined. For SISO cases, it is useful to apply 

a systematic procedure to obtain the necessary 

information from the lag space to be able to make a 

better and more informed selection of the number of 

repressors used as inputs to the NN, see the paper of 

[29]. Nevertheless, the extension of this procedure 

for the MIMO case is beyond the scope of this work. 

Therefore, a simple evaluation of the differential 

equations of the dynamic system was used to determine 

and expect that four past values would be enough to 

capture the essential pendulum’s dynamics.

RESULTS

Training and validation of the NNARMAX for 

α and β
Once the model structure is selected and the training 

signals are obtained, the training procedure follows. 

The Department of Mathematical Modelling of 

the Technical University of Denmark released a 

free toolbox for Matlab, written by Nörgaard, in 

which the algorithms are implemented to conduct 

NN-based nonlinear system identification. In this 

project, the toolbox was used to identify two SISO 

NNs, one for each output.

The data used in the training phase is scaled so that it 

has zero mean and unitary variance. Then, the Data 

is divided; a part will be used solely for training 

purposes while the second part will be used for 

validating the obtained model. The parameters that 

define the selected model structure are the number of 

neurons of each layer and consequently the number 

of regressors. When the network was trained using 4 

past values of the prediction error for the regressor 

vector, the learning process was unsuccessful; the 

training algorithm did not converge to the expected 

global minima. The training was successful only 

when the last value of the prediction error was used 

as input to the neural network.

Once the model structure is defined, the parameters 

used by the training algorithm are selected through 

the following command:

trparms = settrain (trparms, ‘maxiter’, 300, ‘D’, 

1e-3,‘skip’, 10, ‘infolevel’,1, ‘repeat’, 100);

A maximum of 300 iterations is forced, with a 

weight decay factor of 0.001; the ‘skip’ parameter 

was set to be 10, indicating that the first 10 samples 

are not used for training. The IGLS parameter (last 

function argument), on the other hand, is set at 100, 

meaning that the procedure to estimate the covariance 

matrix using an iterated generalized least squares 

method is repeated 100 times. When the training 

stage has finished, the weights are rescaled, so that 

the resulting network can work with unscaled data.

Results of the training

After the training session, the results returned by the 

toolbox are shown for each output in Figures 11-14. 

Figure 11 shows the results for the one-step-ahead 

Figure 11. Results of the training session for alfa.Figure 10. Modified NNARMAX model structure.
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prediction of the horizontal angle, and it follows 

almost an identical path as the observed output. 

The prediction error is smaller than 0.02 rad for 

the whole range, which is acceptable. Figure 12 

presents three different correlation functions; the 

first one looks for patterns in the prediction error, the 

second one shows that the correlation between the 

torque and the predicted horizontal angle is below 

0.1 for all the range, and the authors consider the 

performance satisfactory.

Finally, the correlation between the output for 

the vertical angle and the predicted output for 

the horizontal angle is below 0.05, which is also 

acceptable. Figure 13 and Figure 14 can undergo 

a similar analysis, and thus the authors consider 

that the estimated model adequately captures the 

system’s dynamics.

Validation of the neural network

To fully accept the estimated model, it is necessary 

to consider that the closed-loop system would be 

expected to track a periodic signal in the frequency 

range of 2 to 4 Hz, which implies that the NN 

must be able to predict enough steps in the future 

for the dynamics of the system are considered. 

Consequently, the NN should be able to predict 

the next 10-time steps accurately. For this purpose, 

a 10-step-ahead prediction is obtained from each 

network (see Figure 15 and Figure 16). The authors 

consider the performance satisfactory; thus, the 

model is accepted.

Final SIMO – NNARMAX model

To clarify how the complete NN is assembled, 

consider Figure 17; each network depends on 

a set of regressors, which are the same for both 

Figure 12. Results of the training session for alfa. Figure 14. Results of the training session for beta.

Figure 13. Results of the training session for beta. Figure 15. 10-step-ahead prediction of alfa.
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networks. The result of arranging the obtained 

NN for each angular output in parallel forms the 

SIMO NNARMAX model, with twice as many 

neurons in the input layer and two neurons in the 

output layer. Such a model is suitable for controller 

design purposes.

CONCLUSION

An appropriate model of the Furuta Pendulum 

using two interconnected MISO-NNARMAX that 

behave as a SIMO-NNARMAX has been found and 

estimates accurately 10-step-ahead predictions for 

the horizontal and vertical angles.

The Identification of nonlinear dynamic systems 

using an ARX model is more straightforward 

and less involved as that of an ARMAX model. 

Furthermore, an adequate study of the frequency 

range on which data from the system must be 

retrieved might reduce the size of the data needed 

for training. The model structure selection is one of 

the major problems when using neural networks; 

considering that there is no systematic approach to 

select the appropriate number of regressors, hints 

might be available on the differential equations 

of motion.

In the training stage of the NNARMAX network, 

the first 4 past values of the prediction error 

were used as inputs to the NN; the absence of 

convergence in the training algorithm led the 

author to believe that a programming error might 

have occurred or that maybe some unstable issues 

with the ARMAX model had to be taken into 

consideration. The possibility that the input signal 

was not exciting enough the system’s dynamics 

was disregard because a good approximation was 

found using an NNARX. After several training 

attempts, a modification on the model structure 

reducing the number of regressors from four to 

one lead to convergence of the estimated model. 

This conclusion might have been obtained by 

noticing that the network tried to identify higher 

frequencies, leading to poor performance.

The solution of multivariable systems is considerably 

more involved than that of a SISO system. Using 

the NNARMAX model or the linearized ARMAX 

model obtained from the NN, many controller 

strategies can be pursued for the Furuta pendulum, 

including pole placement, optimal control, and 

minimum variance.
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